

# **Traffic Impact Assessment**

**Medical Centre** 

Howick Street Bathurst NSW

January 2022

Prepared by:

## **Spotto** CONSULTING

For:

# **Zauner Construction**

© Spotto Consulting 2022

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of Spotto Consulting.

| Ref   | Version | Date             | Revision Details | Author |
|-------|---------|------------------|------------------|--------|
| P0124 | A       | 26 February 2021 | Draft            | SWS    |
|       | В       | 4 June 2021      | DA Submission    | SWS    |
|       | С       | 27 October 2021  | DA Submission    | SWS    |
|       |         |                  | (Revised Plans)  |        |
|       | D       | 31 January 2022  | DA Submission    | SWS    |

## CONTENTS

| 1    | INTR  | ODUCTION                                    | . 1 |
|------|-------|---------------------------------------------|-----|
| 2    | EXIS  | TING CONDITIONS                             | . 2 |
|      | 2.1   | Site                                        | . 2 |
|      | 2.2   | Surrounding Land Use                        | .4  |
|      | 2.3   | Consultation                                | . 4 |
|      | 2.4   | Road Network                                | . 5 |
|      | 2.5   | Existing Traffic Conditions                 | . 8 |
|      | 2.6   | Parking Supply and Demand                   | 14  |
|      | 2.7   | Crash Data                                  | 16  |
|      | 2.8   | Public Transport                            | 16  |
|      | 2.9   | Pedestrians and Cyclists                    | 17  |
| 3    | PRO   | POSED DEVELOPMENT                           | 18  |
| 4    | IMPA  | CT OF PROPOSED DEVELOPMENT                  | 19  |
|      | 4.1   | Road Network                                | 19  |
|      | 4.2   | Site Access and Car Parking                 | 24  |
|      | 4.3   | Service and Delivery Vehicles               | 25  |
|      | 4.4   | Pedestrian and Cyclist Impact               | 26  |
| 5    | CON   | CLUSIONS AND RECOMMENDATIONS                | 27  |
| APPE | ENDIX | A – INTERSECTION ANALYSIS: EXISTING         | .A  |
| APPE | ENDIX | B – PARKING SURVEY DATA                     | .В  |
| APPE | ENDIX | C – PLANS OF PROPOSED DEVELOPMENT           | .C  |
| APPE | ENDIX | D – INTERSECTION ANALYSIS: WITH DEVELOPMENT | .D  |
| APPE | ENDIX | E – TURNING TEMPLATES                       | .E  |

## 1 INTRODUCTION

Spotto Consulting have been engaged by Zauner Construction to complete a Traffic Impact Assessment. The study is in response to a proposed development at Howick Street, Bathurst. The development involves construction of a six level medical centre with a gross floor area of 10,299m<sup>2</sup>, plus a four level off-street car park to service the proposed development and surrounding areas. Overall, the number of off-street parks on the site will increase to 915 spaces.

The purpose of the assessment is to review the existing conditions in the vicinity of the site, including traffic, parking and servicing, as well as the performance of the surrounding network. An evaluation is then required of the traffic and parking requirements for the proposed development, and the impacts on the surrounding road network.

The assessment concluded that:

- Traffic surveys and modelling of nearby intersections (including accesses to site) show that the intersections currently operate at an excellent Level of Service (LOS A, the highest level) or better. The midblock level of service on all roads surrounding the site is satisfactory (LOS C) or better;
- Parking surveys carried out on a typical weekday show that there is generally a satisfactory amount of on-street parking in the vicinity of the site to meet current demand, although the off-street parking experiences a high level of demand;
- The proposed development is anticipated to generate 571 vehicle trips per hour in the AM peak hour (321 from the proposed medical centre plus 250 from augmentation of the off-street car park) and 692 vehicle trips per hour in the PM (392 plus 300) peak hour, which will not have a significant impact on the performance of the road network in the immediate vicinity of the site (including nearby intersections, midblock sections of road and site accesses);
- The provision of 915 off-street parking spaces meets the minimum requirements for the proposed development under the *Bathurst Regional Development Control Plan 2014 Chapter 14 – Parking*, while the car parking and access driveways satisfactorily address all matters for consideration under the DCP and *Australian Standard AS2890*. Adequate provision has been made for persons with a disability;
- Adequate provision has been made for servicing and delivery vehicles; and
- Adequate provision has been made for pedestrians and cyclists.

The assessment recommended that:

- A right turn lane be provided for northbound vehicles on Rankin Street turning right into Gallipoli Lane;
- Entry into Milne Lane from Howick Street be restricted to vehicles under 6m in length and/or 2 tonnes in weight;
- Remotely-activated boom gates should be installed at both vehicle access points into the at-grade off-street car park located immediately west of the proposed medical centre; and
- Signage be installed in the parking adjacent to the medical centre designating a Loading Zone to the east (Milne Lane) and 15 Minute Parking to the south (Gallipoli Road).

## 2 EXISTING CONDITIONS

### 2.1 Site

The site is located in the Bathurst Central Business District (CBD), and is bound by Howick Street, Rankin Street, Russell Street and George Street, as shown in Figure 2-1, below.



Figure 2-1: Locality Plan

The site comprises a number of lots, and is essentially divided into two main components:

- 250-252 Howick Street Comprising Lot 2 DP568837, Lots A and B DP163425, Lot 71 DP579908, Lot 20 DP549764 and Lot 17 DP584625 and with a total area of approximately 4,100m<sup>2</sup>, this part of the site was formerly used for car sales and service; and
- George Street Car Park Comprising Lot 11 DP1160748, with a total area of approximately 1.14 hectares, this part of the site is currently used for at-grade car parking.

Vehicular access to the site is available from a number of locations, including directly from Howick Street, as well as via several laneways including Milne Lane (from Howick Street), Gallipoli road (from Rankin Street) and Rigbys Lane (from Russell Street).

In addition, pedestrian access is available via Machattie Lane (from George Street), which is closed to vehicles.

Key roads in the vicinity of the site, as well as site access arrangements, are shown in Figure 2-2, below.



Figure 2-2: Site access and surrounds (Source: SixMaps)

## 2.2 Surrounding Land Use

The site and immediate surrounds are currently zoned B3 Commercial Core under the *Bathurst Regional Local Environmental Plan 2014* (as shown in Figure 2-3, below). The surrounding properties include a variety of uses typical of those found in a CBD location, including retail, commercial and dining. Other significant land uses near the site include the Bathurst RSL and Police Station, both located on Rankin Street to the north-west.

Land further to the north and west is zoned R1 General Residential, and in addition to residential housing, also incorporates a number of commercial and office properties.



Figure 2-3: Land Zoning (Source: Bathurst Regional LEP 2014)

## 2.3 Consultation

In preparing this report, consultation has been undertaken with officers from Bathurst Regional Council and Transport for NSW (TfNSW). Spotto Consulting appreciates the opportunity to discuss key issues relating to the local transport network with these officers, and acknowledges the insights gained through this consultation.

## 2.4 Road Network

#### 2.4.1 Surrounding Streets

The site is essentially bound by four local streets, being Howick Street, Rankin Street, Russell Street and George Street. All four streets are contained within 30m-wide road reserves, and have carriageways with widths of 22m. Each road contains a single through lane in each direction, with rear-to-kerb angle parking on-street (with the exception of some parallel parking for cars and buses in several locations). Loading zones are also provided in central median locations on Howick Street and George Street. Footpaths are provided on both sides of each road. The speed limit on each of the roads is the default urban speed limit of 50km/h.

As the Bathurst CBD street network is generally laid out in a regular grid format, there is a relatively even distribution of traffic across most roads. Roads within the Bathurst CBD balance through movement with property access. All four roads surrounding the site are under the control of Bathurst Regional Council.



Figure 2-4: Howick Street



Figure 2-5: Rankin Street



Figure 2-6: Russell Street



Figure 2-7: George Street

#### 2.4.2 Laneways

Access to the site is available via four laneways:

- Milne Lane intersects with Howick Street via a three-leg T-intersection, with priority to vehicles travelling along Howick Street. It is a two-way sealed urban road defined by upright kerb and gutter, with a width of 6m;
- Gallipoli Road intersects with Rankin Street via a three-leg T-intersection, with priority to vehicles travelling along Rankin Street. It is a two-way sealed urban road defined by upright kerb and gutter, with a width of 6m for the first 40m of its length (thereafter splitting into two different directions of travel within the off-street car park);
- Rigbys Lane intersects with Russell Street via a three-leg T-intersection. It is a one-way road northbound from Russell Street into the off-street car park with a width of 4m; and
- Machattie Lane provides access only for pedestrians. It is a 4m-wide lane that runs from George Street for a distance of approximately 60m before accessing the off-street car park.

Due to the narrow widths, low speeds and limited lengths, the laneways favour access over through movement. All four laneways are under the control of Bathurst Regional Council.



Figure 2-8: Milne Lane



Figure 2-9: Gallipoli Road



Figure 2-10: Rigbys Lane



Figure 2-11: Machattie Lane

#### 2.4.3 Intersections

The block of streets surrounding the site comprising Howick Street, Rankin Street, Russell Street and George Street has all roads intersecting via four-leg roundabouts. All four roundabouts have a single circulating lane and an internal island of 14m in diameter.

Three of the roundabouts have two approach lanes on each leg: a dedicated left turn lane plus a shared through/right turn lane. The exception to this is the intersection of Howick Street and George Street, which has only a single lane on each approach.

The intersection of Russell Street and George Street has zebra crossings for pedestrians on three of its four legs. The other leg on this intersection, and all of the other intersections, do not have this feature.



Figure 2-12: Howick Street and Rankin Street



Figure 2-13: Russell Street and Rankin Street



Figure 2-14: Russell Street and George Street



Figure 2-15: Howick Street and George Street

## 2.5 Existing Traffic Conditions

#### 2.5.1 Data Collection

The following data was provided by Council:

- Traffic counts undertaken on Howick Street and Rankin Street in December 2020 (Metrocount files including detailed volume, speed and vehicle classification data);
- Summary data for historical traffic counts undertaken from 2003 onwards by Council on surrounding streets (AADT values only); and
- Turning counts undertaken in October 2018 at the four key intersections surrounding the site (7AM-10AM and 3PM-6PM).

Turning movement counts were also undertaken at the four key intersections surrounding the site in February 2021. These surveys were undertaken across the morning and evening peak periods, allowing the peak hour in each period to be determined.

It should be noted that as this is a CBD location, some roads and intersections experience a high volume of traffic in the middle of the day. As the proposed development involves a commercial development whose traffic generation will be highest during the morning and evening commuter peak periods, these are the peak periods that have been assessed.

#### 2.5.2 Intersections

Using the data and methodology detailed in Section 2.5.1, the traffic movements at key intersections in 2021 can be accurately determined. The turning movements for the busiest one-hour period in the AM and PM peak periods are summarised for the four key intersections on the block surrounding the site in Figure 2-16 and Figure 2-17, below.

|      | Rank        | in Street 8 | Howick S | treet     |        |      | Geor       | ge Street & | & Howick S | treet     |        |
|------|-------------|-------------|----------|-----------|--------|------|------------|-------------|------------|-----------|--------|
|      |             |             | 15       | 314       | 106    |      |            |             | 97         | 393       | 4      |
|      |             |             | <        | v         | >      |      |            |             | <          | v         | >      |
| Howi | ck St (W)   |             | F        | Rankin St | (N)    | Howi | ck St (W)  |             | G          | George St | (N)    |
| 19   | ^           |             |          |           |        | 60   | ^          |             |            |           |        |
| 114  | >           |             |          |           |        | 135  | >          |             |            |           |        |
| 23   | v           |             |          |           |        | 50   | v          |             |            |           |        |
|      |             |             |          | ^         | 32     |      |            |             |            | ^         | 58     |
|      |             |             |          | <         | 46     |      |            |             |            | <         | 78     |
|      |             |             |          | v         | 67     |      |            |             |            | V         | 78     |
| Ra   | nkin St (S) |             |          | Howick S  | St (E) | Ge   | orge St (S | )           |            | Howick S  | St (E) |
| <    | ^           | >           |          |           |        | <    | ^          | >           |            |           |        |
| Э    | 133         | 80          |          |           |        | 45   | 157        | 81          |            |           |        |

|       | Rank        | in Street 8 | Russell St | treet     |        |      | Geor        | ge Street & | & Russell S | treet     |        |
|-------|-------------|-------------|------------|-----------|--------|------|-------------|-------------|-------------|-----------|--------|
|       |             |             | 48         | 180       | 122    |      |             |             | 52          | 331       | 8      |
|       |             |             | <          | V         | >      |      |             |             | <           | V         | >      |
| Russe | ell St (W)  |             | F          | Rankin St | (N)    | Russ | ell St (W)  |             | G           | George St | (N)    |
| 22    | ^           |             |            |           |        | 79   | ^           |             |             |           |        |
| 147   | >           |             |            |           |        | 207  | >           |             |             |           |        |
| 20    | v           |             |            |           |        | 37   | v           |             |             |           |        |
|       |             |             |            | ^         | 82     |      |             |             |             | ^         | 80     |
|       |             |             |            | <         | 92     |      |             |             |             | <         | 151    |
|       |             |             |            | v         | 24     |      |             |             |             | V         | 51     |
| Ra    | nkin St (S) |             |            | Russell S | St (E) | Ge   | eorge St (S | )           |             | Russell S | St (E) |
| <     | ^           | >           |            |           |        | <    | ^           | >           |             |           |        |
| 9     | 158         | 26          |            |           |        | 26   | 215         | 25          |             |           |        |

Figure 2-16: AM Peak Hour Turning Movements - Existing Conditions

|      | Rank        | in Street 8 | & Howick S | treet     |        |      | Geor        | ge Street & | R Howick S | treet     |        |
|------|-------------|-------------|------------|-----------|--------|------|-------------|-------------|------------|-----------|--------|
|      |             |             | 50         | 216       | 113    |      |             |             | 81         | 240       | 55     |
|      |             |             | <          | v         | >      |      |             |             | <          | v         | >      |
| Howi | ck St (W)   |             | F          | Rankin St | (N)    | Howi | ck St (W)   |             | C          | George St | (N)    |
| 29   | ^           |             |            |           |        | 132  | ^           |             |            |           |        |
| 97   | >           |             |            |           |        | 169  | >           |             |            |           |        |
| 19   | v           |             |            |           |        | 37   | v           |             |            |           |        |
|      |             |             |            | ^         | 97     |      |             |             |            | ^         | 110    |
|      |             |             |            | <         | 72     |      |             |             |            | <         | 101    |
|      |             |             |            | v         | 57     |      |             |             |            | v         | 110    |
| Ra   | nkin St (S) |             |            | Howick S  | St (E) | Ge   | eorge St (S | )           |            | Howick S  | St (E) |
| <    | ^           | >           |            |           |        | <    | ^           | >           |            |           |        |
| 17   | 218         | 99          |            |           |        | 44   | 319         | 90          |            |           |        |

|       | Rank        | in Street & | & Russell St | treet     |        |      | Geor        | ge Street & | & Russell S | treet     |        |
|-------|-------------|-------------|--------------|-----------|--------|------|-------------|-------------|-------------|-----------|--------|
|       |             |             | 44           | 232       | 81     |      |             |             | 54          | 276       | 67     |
|       |             |             | <            | v         | >      |      |             |             | <           | v         | >      |
| Russe | ell St (W)  |             | F            | Rankin St | (N)    | Russ | ell St (W)  |             | 0           | George St | (N)    |
| 26    | ^           |             |              |           |        | 77   | ^           |             |             |           |        |
| 85    | >           |             |              |           |        | 130  | >           |             |             |           |        |
| 14    | v           |             |              |           |        | 17   | v           |             |             |           |        |
|       |             |             |              | ^         | 149    |      |             |             |             | ^         | 129    |
|       |             |             |              | <         | 127    |      |             |             |             | <         | 176    |
|       |             |             |              | v         | 28     |      |             |             |             | v         | 56     |
| Ra    | nkin St (S) |             |              | Russell S | St (E) | Ge   | eorge St (S | )           |             | Russell S | st (E) |
| <     | ^           | >           |              |           |        | <    | ^           | >           |             |           |        |
| 6     | 135         | 24          |              |           |        | 35   | 278         | 25          |             |           |        |

Figure 2-17: PM Peak Hour Turning Movements - Existing Conditions

The performance of these intersections was modelled using the intersection analysis program SIDRA Intersection. Full results for the existing AM and PM peak periods are included in Appendix A, and summarised in Table 2-1 below.

| Intersection           | Total Flow<br>(veh/h) | Degree of<br>Saturation | Average<br>Delay (sec) | Level of<br>Service* |
|------------------------|-----------------------|-------------------------|------------------------|----------------------|
| Howick St & Rankin St  |                       |                         |                        |                      |
| AM                     | 1,008                 | 0.259                   | 5.0                    | А                    |
| PM                     | 1,141                 | 0.252                   | 5.6                    | А                    |
| Russell St & Rankin St |                       |                         |                        |                      |
| AM                     | 979                   | 0.178                   | 5.2                    | А                    |
| PM                     | 1,001                 | 0.230                   | 5.4                    | А                    |
| Russell St & George St |                       |                         |                        |                      |
| AM                     | 1,413                 | 0.318                   | 5.6                    | А                    |
| PM                     | 1,389                 | 0.271                   | 5.7                    | А                    |
| Howick St & George St  |                       |                         |                        |                      |
| AM                     | 1,342                 | 0.522                   | 6.4                    | А                    |
| PM                     | 1,566                 | 0.464                   | 6.9                    | А                    |

\* Level of Service (LOS) is a qualitative assessment of the quantitative effect of factors such as speed, volume of traffic, geometric features, traffic interruptions, delays and freedom to manoeuvre. It ranges from A (best) to F (worst), and is calculated using average delay.

The analysis demonstrates that under 2021 traffic volumes, all intersections currently operate at an excellent Level of Service (LOS A, the highest level) in both the AM and PM peak periods. This indicates intersections operating with low levels of delay and saturation, and with ample spare capacity.

A comparison of the 2021 data with the data from 2018 provided by Council is summarised in Table 2-2, below.

| Intersection           | 2021<br>Total Flow<br>(veh/h) | 2018<br>Total Flow<br>(veh/h) | Difference<br>2021 vs 2018 |
|------------------------|-------------------------------|-------------------------------|----------------------------|
| Howick St & Rankin St  |                               |                               |                            |
| AM                     | 1,008                         | 973                           | +3.6%                      |
| PM                     | 1,141                         | 1,084                         | +5.3%                      |
| Russell St & Rankin St |                               |                               |                            |
| AM                     | 979                           | 933                           | +4.9%                      |
| PM                     | 1,001                         | 962                           | +4.1%                      |
| Russell St & George St |                               |                               |                            |
| AM                     | 1,413                         | 1,332                         | +6.1%                      |
| PM                     | 1,389                         | 1,295                         | +7.2%                      |
| Howick St & George St  |                               |                               |                            |
| AM                     | 1,342                         | 1,322                         | +1.5%                      |
| PM                     | 1,566                         | 1,500                         | +4.4%                      |

| Table 2-2: Intersection | comparison – 2021 | data versus | 2018 data |
|-------------------------|-------------------|-------------|-----------|
|                         |                   |             |           |

The key points to note from this include:

- PM volumes are consistently higher than AM volumes;
- The 2021 volumes at each site are generally in proportion to those seen in 2018 (in comparison to other sites), indicating consistency between the data sources; and
- The average volume at intersections in 2021 is generally 4-5% than in 2018, indicating some level of growth in background traffic volumes (of the order of 1.5% per annum).

#### 2.5.3 Site Accesses

As noted in Section 2.4.2, above, the site is accessed directly from Howick Street, with the offstreet car parking accessible from several laneways. It is important to note that the movement off traffic into and out of the site varies across the day.

AM traffic movements at the site and off-street car park consist predominantly of inbound vehicles seeking long term/all day parking, and to a lesser extent, vehicles accessing the fitness club. The number of vehicles parked at the site and off-street car park increased from 52 vehicles to 289 vehicles between 8AM and 10AM, a net increase of 237 vehicles over two hours.

Traffic movements are lower during the middle of the day, as there are fewer off-street parking spaces available. Traffic movements are relatively balanced between inbound and outbound movements, as demand at the RSL increases during the lunchtime period, while few long term/all day car parks are vacated.

PM traffic movements consist of a more balanced mixture of inbound and outbound movements, with inbound vehicles accessing the RSL and fitness club, and outbound vehicles being CBD employees departing the long term/all day parking. The number of vehicles parked

at the site and off-street car park decreased from 227 vehicles to 169 vehicles between 4PM and 6PM, a net decrease of only 58 vehicles over two hours. This indicates that although there is a significant outbound volume of commuter traffic, there is also a significant inbound volume of vehicles accessing the RSL for dinner, and to a lesser extent the fitness club. This is further reinforced by the observation that there are only 12 fewer cars observed parked in the area a further two hours later at 8PM.

The turning movements for the busiest one-hour period in the AM and PM peak periods are summarised for the key site access locations of Milne Lane and Howick Street, as well as Gallipoli Road and Rankin Street, in Figure 2-18 and Figure 2-19, below.

|        | Street   | e Lane & Howid | Miln        |      |        | ooli Road | in Street & Gal | Ranki         |
|--------|----------|----------------|-------------|------|--------|-----------|-----------------|---------------|
| _      |          |                |             |      | 50     | 353       |                 |               |
|        |          |                |             |      | >      | v         |                 |               |
|        |          |                | ck St (W)   | Howi | (N)    | Rankin St |                 |               |
|        |          |                | >           | 275  |        |           |                 |               |
|        |          |                | v           | 25   |        |           |                 |               |
| _      |          |                |             |      |        |           |                 |               |
| 16     | <        |                |             |      | 12     | ^         |                 |               |
| 50     | v        |                |             |      | 20     | v         |                 |               |
| St (E) | Howick S |                | ilne Ln (S) | M    | Rd (E) | Gallipoli |                 | Rankin St (S) |
|        |          | >              | <           |      |        |           | >               | ^             |
|        |          | 12             | 6           |      |        |           | 75              | 187           |

Figure 2-18: AM Peak Hour Turning Movements - Existing Conditions



Figure 2-19: PM Peak Hour Turning Movements - Existing Conditions

The performance of these site accesses was modelled using the intersection analysis program SIDRA Intersection. Full results for the existing AM and PM peak periods are included in Appendix A, and summarised in Table 2-1 below.

| Intersection               | Total Flow<br>(veh/h) | Degree of Saturation | Average<br>Delay (sec) | Level of<br>Service |
|----------------------------|-----------------------|----------------------|------------------------|---------------------|
| Rankin St & Gallipoli Road |                       |                      |                        |                     |
| AM                         | 734                   | 0.226                | 1.6                    | А                   |
| PM                         | 747                   | 0.186                | 1.8                    | А                   |
| Howick St & Milne Lane     |                       |                      |                        |                     |
| AM                         | 565                   | 0.173                | 1.0                    | А                   |
| PM                         | 633                   | 0.176                | 1.1                    | А                   |

| Table 2-3: Site | access | performance | summarv · | - existina | conditions  |
|-----------------|--------|-------------|-----------|------------|-------------|
|                 | 400000 | portormanoo | ounnury   | onioting   | oomantionio |

The key points from this analysis include:

- Both site accesses operate at an excellent Level of Service (LOS A, the highest level) in both the AM and PM peak periods, indicating intersections operating with low levels of delay and saturation, and with ample spare capacity;
- Similar to the surrounding key intersections, overall volumes are higher in the PM peak period than in the AM peak period (a function of both higher traffic levels on the surrounding road network, as well as the difference in traffic volumes at the site as noted above); and
- Delays are highest on the access roads (Milne Lane and Gallipoli Road), although both are relatively low in the AM and PM peak periods.

#### 2.5.4 Midblock

Traffic volumes midblock (ie. between intersections) can be determined for the peak periods based on the turning movement data. It is also possible to estimate daily midblock traffic volume using the turning movement data: analysis of the midblock data provided by Bathurst Regional Council for Howick Street and Rankin Street shows that the AM and PM peak hour traffic volume represents approximately 16% of the total daily traffic volume, or 8% each. This is in line with guidance on traffic modelling from Austroads and TfNSW, which indicates that peak hour is typically between 8-12% of AADT (daily volume).

A summary of the midblock data for the key sections of roads in the vicinity of the site, including weekday traffic volumes (in vehicles per day), peak hour traffic volumes (in vehicles per hour) and Level of Service (LOS) is provided in Table 2-4, below.

| Location          | Weekday* | Weekday | AM Peak          | Weekday | PM Peak          |
|-------------------|----------|---------|------------------|---------|------------------|
|                   | Veh/d    | Veh/h   | LOS <sup>#</sup> | Veh/h   | LOS <sup>#</sup> |
| Howick Street     | 6,440    | 464     |                  | 566     |                  |
| (West of George)  |          |         |                  |         |                  |
| Eastbound         |          | 245     | В                | 339     | В                |
| Westbound         |          | 219     | В                | 227     | В                |
| Rankin Street     | 7,810    | 624     |                  | 625     |                  |
| (South of Howick) |          |         |                  |         |                  |
| Southbound        |          | 403     | С                | 291     | В                |
| Northbound        |          | 221     | В                | 334     | В                |
| Russell Street    | 6,500    | 552     |                  | 488     |                  |
| (West of George)  |          |         |                  |         |                  |
| Eastbound         |          | 323     | В                | 223     | В                |
| Westbound         |          | 229     | В                | 265     | В                |
| George Street     | 10,270   | 803     |                  | 840     |                  |
| (South of Howick) |          |         |                  |         |                  |
| Southbound        |          | 520     | С                | 387     | С                |
| Northbound        |          | 283     | В                | 453     | С                |

| Table 2-4: Midblock | k traffic data – | - existing | conditions |
|---------------------|------------------|------------|------------|
|---------------------|------------------|------------|------------|

\* Weekday traffic volumes calculated assuming average of AM and PM peak period represents 8% each of daily total, in line with observations from midblock data on Howick Street and Rankin Street

<sup>#</sup> Level of Service calculated based on typical midblock capacities for two-lane, two-way roads from Austroads Guide to Traffic Management Part 3: Traffic Studies and Analysis.

All midblock sections of road operate at a good or satisfactory level of service (LOS B or C), indicating midblock sections with adequate capacity for existing traffic volumes.

A comparison of the 2021 data with the data from 2020 provided by Council for Howick and Rankin Streets is summarised in Table 2-2, below.

| Midblock Section | 2021<br>Weekday<br>(veh/d) | 2020<br>Weekday<br>(veh/d) | Difference<br>2021 vs 2018 |
|------------------|----------------------------|----------------------------|----------------------------|
| Howick Street    | 6,440                      | 6,504                      | -1.0%                      |
| Rankin Street    | 7,810                      | 7,449                      | +4.8%                      |

Table 2-5: Midblock comparison – 2021 data versus 2020 data

The 2021 survey data is within +/-10% of the 2020 Council data for weekdays, indicating that the count data is a good correlation with the longer term midblock counts undertaken by Council in 2020.

## 2.6 Parking Supply and Demand

The existing parking in the vicinity of the site was surveyed on Thursday 4 February 2021 to determine the number of available and occupied spaces.

The existing road network and off-street parking was surveyed to determine the amount of publicly-available parking spaces in the vicinity of the site. This takes into account the location of driveways, intersections and designated "no stopping" zones, as well as numbers of linemarked spaces on-street and off-street. It excludes car parking on private sites. A parking

survey was also undertaken, which involved manually counting the number of vehicles parked off-street and on-street at two hour intervals across the day (from 8AM to 8PM).

These investigations allow both the supply and demand of publicly-available parking in the vicinity of the site to be determined, as well as the usage across the day.

In addition, this data can be compared to observed rates from Council's *Bathurst CBD Car Parking Strategy 2013* – this publication reports rates by city block from surveys completed in 2010, allowing effective comparisons to be made. While the strategy does not specify the time periods for collection of parking data, it is assumed that they may be compared with the average usage during business hours (10AM-4PM) from the 2021 surveys.

Full details of the parking survey are included in Appendix B, and summarised in Table 2-6, below.

| Area                |                                       | Time of Day                                   |            | From Bathurst                     |
|---------------------|---------------------------------------|-----------------------------------------------|------------|-----------------------------------|
|                     | Average Usage<br>All Day<br>(8AM-8PM) | Average Usage<br>Business Hours<br>(10AM-4PM) | Peak Usage | CBD Parking<br>Strategy<br>(2013) |
| Howick Street       | 34%                                   | 51%                                           | 67%        | 50%                               |
| (George-Rankin)     |                                       |                                               |            |                                   |
| Rankin Street       | 63%                                   | 64%                                           | 75%        | 63%                               |
| (Howick-Russell)    |                                       |                                               |            |                                   |
| Russell Street      | 44%                                   | 64%                                           | 82%        | 46%                               |
| (George-Rankin)     |                                       |                                               |            |                                   |
| George Street       | 37%                                   | 48%                                           | 52%        | 67%                               |
| (Howick-Russell)    |                                       |                                               |            |                                   |
| Council/RSL         | 61%                                   | 79%                                           | 91%        | 73%                               |
| Off-Street Car Park |                                       |                                               |            |                                   |
| Site                | 36%                                   | 55%                                           | 67%        | -                                 |
| Off-Street Car Park |                                       |                                               |            |                                   |

Table 2-6: Summary of Key Parking Survey Results

Key points to note from this include:

- A peak usage of 85% is considered high (*Austroads Guide to Traffic Management Part 11: Parking*), and the peak usage of on-street parking overall in the sections surveyed was below this. The highest usages were seen in Russell Street and Rankin Street, with peak usages of 82% and 75%, respectively, although it should be noted that within these sections, there were areas of high demand (for example, the untimed parking at the Rankin Street end of Russell Street was 100% full at times);
- A comparison of on-street usage from 2013 with 2021 shows that the on-street usage rates for Howick Street (50% versus 51%) and Rankin Street (63% and 64%) were very similar. Usage rates for Russell Street had increased (46% versus 64%), while those for George Street had decreased (67% versus 48%);
- Off-street parking usage in the George Street car park was high, peaking at 91%, and higher than in 2013 (increasing from 73% to 79%). Within this car park, several areas had peak parking rates exceeding 85%, including the untimed parking (peak usage rate of 99%) and the area of four hour parking closest to the RSL (peak usage rate of 96%);
- There is some evidence of all day parking in the four hour car parking areas of the offstreet car park (for example, observing the same vehicle parked in position all day with sunshades in place). In addition, streets outside the survey area were noted to be occupied later in the day (for example, Rankin Street between Russell Street and Keppel Street),

indicating longer term parking demands by people arriving later in the day and unable to secure an untimed parking space in the George Street off-street car park.

### 2.7 Crash Data

Data on crashes was obtained from the Transport for NSW Centre for Road Safety Interactive Crash Statistics database. In the most recent five year period for which data is available, the database showed that there were six crashes in the immediate vicinity of the site, as shown in Figure 2-20, below.



Figure 2-20: Crashes in vicinity of site 2016-2020 (Source: TfNSW Interactive Crash Stats)

These crashes resulted in a total of seven injuries.

Four of the six crashes occurred at roundabouts, with another at a T-junction, most involving multiple vehicles. One of the crashes involved a pedestrian.

#### 2.8 Public Transport

Public buses operate in the Bathurst area, with routes operated by Bathurst Buslines providing access to all areas of Bathurst. Most run once per hour Monday to Friday (with higher frequencies during peak times), with some services also available on Saturday every 1-2 hours. The majority of bus routes run along Howick, Rankin and Russell Streets, with the remainder accessible approximately 300m south-east of the site.

Inter-city rail services are available from the Bathurst Train Station, which is located approximately 1.2km south of the site.

## 2.9 Pedestrians and Cyclists

Pedestrians can utilise footpaths on both sides of roads in the vicinity of the site to travel in all directions. Dedicated pedestrian crossings near the Russell Street and George Street roundabout, along with features such as the kerb extensions on George Street near Machattie Lane also assist in safe and easy movement on foot.

Cyclists are able to ride on-road, and there are no dedicated cyclist lanes, paths or other facilities in the immediate vicinity of the site.

Council has a Community Access and Cycling Plan, which identifies a number of existing shared paths through the broader area, and also prioritises future construction works.

#### 3 PROPOSED DEVELOPMENT

The proposed development consists of two primary components:

- A six level medical centre building on the northern part of the site; and
- A four level car park on the southern part of the site.

The medical centre will be located on the site's Howick Street frontage. The ground floor will contain a restaurant/café tenancy and medical tenancies, while levels one to five will be occupied by various medical tenants. The building will have a total Gross Floor Area (GFA) of 10,299m<sup>2</sup>.

The multi-level car park will have access from two locations (one in the east and one in the north-west), with ramps providing access between levels in the south-east. The multi-level car park will provide a total of 827 parking spaces.

Additional car parking will include a reconfiguration of the ground level to provide 63 spaces adjacent to the RSL building, as well as 25 spaces to the west of the medical centre (reserved for doctors and other medical centre staff). Overall the site will provide a total of 915 off-street parking spaces (including at least 27 designated for persons with a disability). Loading and servicing zones for the proposed medical centre will be located on the southern and eastern edges of the building.

Access to the precinct will continue to be via two-way access at Milne Lane (from Howick Street) and Gallipoli Lane (from Rankin Street), with Rigbys Lane remaining one-way inbound. Access around the multi-level car park will be one way (clockwise).

Pedestrian facilities will include dedicated at-grade crossings in the north and east, with a skybridge connecting level 2 of the multi-level car park to the medical centre building across Gallipoli Lane.

Space has been designated for parking of bicycles to the north-west of the multi-level car park, capable of accommodating 28 bicycles.

Plans of the proposed development are included in Appendix C.

## 4 IMPACT OF PROPOSED DEVELOPMENT

#### 4.1 Road Network

#### 4.1.1 Traffic Generation and Distribution

Traffic generation levels for proposed developments can typically be determined by reference to published standards such as the *RTA Guide to Traffic Generating Developments* (and its subsequent update *RMS Technical Direction TDT2013/04a Guide to Traffic Generating Developments – Updated Traffic Surveys*), or interstate and overseas guides such as the *SA DPTI Trip Generation Rates for Assessment of Development Proposals 2014* or the US *ITE Trip Generation Manual (10<sup>th</sup> Edition)*. In some instances, not all land uses are detailed in each publication, and as a result multiple reference sources can be used.

There will be two separate streams of traffic generated by the proposed development:

- New traffic generated by the proposed medical centre building; and
- Redistribution of existing CBD traffic as a result of provision of additional off-street car parking.

The amount of new traffic generated by the proposed medical centre building depends on the land use, and the relevant rates for each land use are summarised in Table 4-1, below.

| Element            | Source                  | Trip Generation Rate           |                           |  |
|--------------------|-------------------------|--------------------------------|---------------------------|--|
|                    |                         | Weekday AM Peak Weekday PM Pea |                           |  |
|                    |                         | Veh/h                          | Veh/h                     |  |
| Restaurant/ Dining | SA DPTI 2014            | 10.2 trips                     | 10.2 trips                |  |
|                    |                         | per 100m <sup>2</sup> GFA      | per 100m <sup>2</sup> GFA |  |
| Medical            | ITE 10 <sup>th</sup> Ed | 3.0 trips                      | 3.7 trips                 |  |
|                    |                         | per 100m <sup>2</sup> GFA      | per 100m <sup>2</sup> GFA |  |

Table 4-1: Traffic Generation Rates for Proposed Medical Centre

The total traffic new generated by the proposed medical centre building is summarised in Table 4-2, below.

| Table 4-2: Traffic | Generation - | Proposed | Medical Centre |
|--------------------|--------------|----------|----------------|
|                    | •••••••      |          |                |

| Element           | Scale                    | Total Number of Trips         |       |  |
|-------------------|--------------------------|-------------------------------|-------|--|
|                   |                          | Weekday AM Peak Weekday PM Pe |       |  |
|                   |                          | Veh/h                         | Veh/h |  |
| Restaurant/Dining | 180m <sup>2</sup> GFA    | 18                            | 18    |  |
| Medical           | 10,119m <sup>2</sup> GFA | 303                           | 373   |  |
| Total             |                          | 321                           | 391   |  |

As noted in Section 2.6, above, there appears to be some latent demand for parking within the CBD – such as longer term parking within the CBD in streets outside those surveyed. Construction of additional off-street parking (over and above that required by the proposed medical centre building) is likely to tap into this latent demand, and result in a redistribution of vehicles already parked within the CBD. For the purposes of this assessment, the traffic volumes into and out of the precinct via Milne Lane and Gallipoli Road (detailed in Section 2.5.3, above) are assumed to double (in line with the increase in off-street car parks over and

above that required for the proposed development, as detailed in Section 4.2, below), as summarised in Table 4-3, below.

| Element  | Scale | Total Number of Trips           |       |  |
|----------|-------|---------------------------------|-------|--|
|          |       | Weekday AM Peak Weekday PM Peal |       |  |
|          |       | Veh/h                           | Veh/h |  |
| Inbound  | -     | 200                             | 125   |  |
| Outbound | -     | 50                              | 175   |  |
| Total    |       | 250                             | 300   |  |

Table 4-3: Traffic Generation – Expansion of Off-Street Car Park

Other assumptions used to determine traffic generation and distribution for the site are that:

- For the proposed medical centre, 75% of traffic will be inbound, and 25% outbound in the AM Peak (in line with typical distributions for commercial/medical and cafe properties, as employees typically travel inbound in the morning to work, and depart in the evening), with these values reversed in the PM Peak;
- Assumptions on the split between traffic entering the site from and exiting the site to the north/east/south/west is provided in Table 4-4, below. Splits have been determined based on approximate distributions of development around the Bathurst CBD, and likely routes considering a review of existing traffic movements. It should be noted that traffic associated with expansion of the off-street car park will generally be a redistribution of traffic within the CBD, and not new traffic to the CBD;

| Origin/<br>Destination | Proportion | Approach Route               | Departure Route             |
|------------------------|------------|------------------------------|-----------------------------|
| North/East             | 30%        | Westbound on Durham Street   | Northbound Milne Lane       |
| (Kelso)                |            | Left at George Street        | Right at Howick Street      |
|                        |            | Right at Howick Street       | Left at George Street       |
|                        |            | Left at Milne Lane           | Right at Durham Street      |
| South                  | 20%        | Northbound on Rankin Street  | Westbound on Gallipoli Road |
| (Bathurst,             |            | OR                           | Left at Rankin Street       |
| South                  |            | Westbound on Russell Street  | THEN                        |
| Bathurst)              |            | Through at George Street     | Through at Russell Street   |
|                        |            | Right at Rankin Street       | OR                          |
|                        |            | THEN                         | Left at Russell Street      |
|                        |            | Right at Gallipoli Road      | Through at George Street    |
| West                   | 20%        | Northbound on Rankin Street  | Westbound on Gallipoli Road |
| (West                  |            | OR                           | Left at Rankin Street       |
| Bathurst,              |            | Northbound on Stewart Street | THEN                        |
| Windradyne)            |            | Right at Russell Street      | Through at Russell Street   |
|                        |            | Left at Rankin Street        | OR                          |
|                        |            | THEN                         | Right at Russell Street     |
|                        |            | Right at Gallipoli Road      | Left at Stewart Street      |
| North/West             | 30%        | Eastbound on Durham Street   | Westbound on Gallipoli Road |
| (Llanarth,             |            | Right at Rankin Street       | Right at Rankin Street      |
| Eglinton)              |            | Through at Howick Street     | Through at Howick Street    |
|                        |            | Right at Gallipoli Road      | Left at Durham Street       |

Table 4-4: Traffic Directional Splits – Proposed Development

#### 4.1.2 Traffic Impact at Intersections

The additional traffic generated by the proposed development was added to the existing traffic flows at the four key intersections in the vicinity of the site. The performance of these key intersections were then modelled using the intersection analysis program SIDRA Intersection. Full results for the AM and PM peak periods are included in Appendix D and summarised in Table 4-5, below.

| Intersection           | Total Flow<br>(veh/h) | Degree of<br>Saturation | Average<br>Delay (sec) | Level of<br>Service |
|------------------------|-----------------------|-------------------------|------------------------|---------------------|
| Howick St & Rankin St  |                       |                         |                        |                     |
| AM                     | 1,188                 | 0.360                   | 5.0                    | А                   |
| PM                     | 1,360                 | 0.361                   | 5.6                    | А                   |
| Russell St & Rankin St |                       |                         |                        |                     |
| AM                     | 1,220                 | 0.228                   | 5.5                    | А                   |
| PM                     | 1,289                 | 0.298                   | 5.7                    | А                   |
| Russell St & George St |                       |                         |                        |                     |
| AM                     | 1,473                 | 0.322                   | 5.7                    | А                   |
| PM                     | 1,462                 | 0.289                   | 5.8                    | А                   |
| Howick St & George St  |                       |                         |                        |                     |
| AM                     | 1,522                 | 0.644                   | 7.6                    | А                   |
| PM                     | 1,785                 | 0.622                   | 8.2                    | А                   |

Table 4-5: Intersection performance summary – with proposed development

The analysis demonstrates that all intersections continue to operate at an excellent Level of Service (LOS A, the highest level) in both the AM and PM peak periods, even with the additional traffic generated by the proposed development. This indicates all intersections will continue to operate with low levels of delay and saturation, and with ample spare capacity.

As vehicles travel further throughout the network, traffic generated by the proposed development becomes more dispersed, and hence has a lower net impact on other intersections. Hence if the impact at nearby intersections is within acceptable limits, then beyond these the impact will be even lower.

It is concluded that traffic from the proposed development can be accommodated at key intersections in the vicinity of the site, and that there will be no significant impacts on intersections as a result of the proposed development.

#### 4.1.3 Traffic Impact at Site Acceses

The additional traffic generated by the proposed development was added to the existing traffic flows at the two site access intersections (Milne Lane and Howick Street, as well as Gallipoli Road and Rankin Street). The performance of these key intersections were then modelled using the intersection analysis program SIDRA Intersection. Full results for the AM and PM peak periods are included in Appendix D and summarised in Table 4-6, below.

| Intersection               | Total Flow<br>(veh/h) | Degree of<br>Saturation | Average<br>Delay (sec) | Level of<br>Service |
|----------------------------|-----------------------|-------------------------|------------------------|---------------------|
| Rankin St & Gallipoli Road |                       |                         |                        |                     |
| AM                         | 1,154                 | 0.389                   | 4.4                    | А                   |
| PM                         | 1,257                 | 0.561                   | 5.0                    | А                   |
| Howick St & Milne Lane     |                       |                         |                        |                     |
| AM                         | 745                   | 0.201                   | 2.1                    | А                   |
| PM                         | 852                   | 0.298                   | 2.8                    | А                   |

| Table 4-6: Site acce | ss performance | summary – with | proposed | development |
|----------------------|----------------|----------------|----------|-------------|
|                      | 33 periormanee | Summary – with | proposed | development |

Both site access intersections continue to operate at an excellent level of service (LOS A, the highest level), even with the additional traffic generated by the proposed development.

It is noted that there is a high level of traffic turning right from Rankin Street into Gallipoli Road in the AM peak period. An assessment of the through and turning volumes at this location indicates that a right turn lane is warranted, in order to minimise delays to northbound through traffic. This should be similar to the existing treatment in place at 72 Rankin Street, north of the site, with the angle parking on the western side of Rankin Street able to be maintained as there is parallel parking on the eastern side of Rankin Street adjacent to the RSL building. All other turning movements are sufficiently low as to not warrant dedicated turning lanes.

It is concluded that traffic from the proposed development can be accommodated at key site access intersections, and subject to the provision of a right turn lane from Rankin Street into Gallipoli Road, there will be no significant impacts as a result of the proposed development.

#### 4.1.4 Traffic Impact Midblock

The additional traffic generated by the proposed development was added to the existing traffic volumes on nearby streets. A summary of the midblock data for the key sections of roads in the vicinity of the site, including weekday traffic volumes, peak hour traffic volumes and Level of Service with the proposed development is provided in Table 4-7, below.

| Location          | Weekday | Weekday | AM Peak | Weekday | PM Peak |
|-------------------|---------|---------|---------|---------|---------|
|                   | Veh/d   | Veh/h   | LOS     | Veh/h   | LOS     |
| Howick Street     | 8,810   | 636     |         | 773     |         |
| (West of George)  |         |         |         |         |         |
| Eastbound         |         | 284     | В       | 479     | С       |
| Westbound         |         | 352     | В       | 294     | В       |
| Rankin Street     | 10,180  | 795     |         | 833     |         |
| (South of Howick) |         |         |         |         |         |
| Southbound        |         | 535     | C       | 358     | В       |
| Northbound        |         | 260     | В       | 475     | С       |
| Russell Street    | 7,290   | 609     |         | 557     |         |
| (West of George)  |         |         |         |         |         |
| Eastbound         |         | 336     | В       | 270     | В       |
| Westbound         |         | 273     | В       | 287     | В       |
| George Street     | 10,270  | 803     |         | 840     |         |
| (South of Howick) |         |         |         |         |         |
| Southbound        |         | 520     | С       | 387     | С       |
| Northbound        |         | 283     | В       | 453     | С       |

Table 4-7: Midblock traffic data – with proposed development

The analysis shows that the only change as a consequence of the proposed development is a slight deterioration in Level of Service eastbound on Howick Street and northbound on Rankin Street in the PM peak period (from LOS B to LOS C). Overall all roads operate at an acceptable LOS for all time periods (LOS C or better), even with the additional traffic generated by the proposed development.

Similar to impacts at intersections, as vehicles travel further throughout the network, traffic generated by the proposed development becomes more dispersed, and hence has a lower net impact on other roads. Hence if the impact on the roads in the vicinity of the site is within acceptable limits, then beyond these roads the impact will be even lower.

It is concluded that there will be no significant impact on roads in the vicinity of the site or further afield as a result of the proposed development.

#### 4.1.5 Sensitivity Analysis

Sensitivity analysis was undertaken to determine the likely future performance of the road network in the vicinity of the site. This involved increasing traffic levels at 1.5% pa (based on the historical increase in traffic levels observed in Section 2.5.2, above) for 10 years and evaluating the performance of intersections and midblock sections of road. The analysis found that:

- In general intersections overall continue to operate at an excellent Level of Service (LOS A, the highest level), with the exception of Howick Street and George Street, which still operates at a good Level of Service (LOS B);
- Queuing on most legs of the intersections is acceptable, with the only exception being the western leg of Howick Street and George Street, which will extend to 85.3m in the PM peak, blocking egress from Milne Lane for vehicles seeking to turn right out of the site. It should be noted that this is caused by the combination of additional traffic from the proposed development, additional traffic from providing extra public car parking (requested by Council, over and above what is required for the development) and growth in background traffic volumes. To put this in perspective, of the total vehicles on the western leg in the PM peak, 339 are existing, 84 are from the proposed development, 53 are from the extra public car parking and 51 are from growth in background traffic volumes that is, the growth in background traffic volumes and traffic resulting from extra public car parking requested by Council exceeds the amount anticipated from the proposed development;
- In general the site access intersections continue to operate at an excellent Level of Service (LOS A, the highest level);
- Queuing at site access intersections is longest on the eastern leg of Rankin Street and Gallipoli Road in the PM peak period (as vehicles are exiting the site), however at 49.3m this does not block any of the internal access roads. All other queuing levels in the AM and PM peak periods are within acceptable limits for the site access intersections; and
- All midblock road sections continue to operate at an acceptable Level of Service (LOS C) or better.

## 4.2 Site Access and Car Parking

Australian Standard AS2890: Parking Facilities (AS2890) specifies the requirements for offstreet car parking, such as dimensions for access and circulation roads as well as car parking spaces. In addition, *Bathurst Regional Development Control Plan 2014 Chapter 14 – Parking* (DCP 14) specifies some additional requirements, such as number of parking spaces.

It is proposed that vehicular access to the site be provided from the following locations:

- Milne Lane (from Howick Street) two way access road east of medical centre;
- Gallipoli Road (from Rankin Street) two way access road south of medical centre;
- Rigbys Lane (from Russell Street) one way access road northbound; and
- Medical Centre western car park access driveways linking the car park to Howick Street and Gallipoli Lane.

The operation of these intersections has been evaluated in Section 4.1.3, above. Subsequent discussion is limited to the configuration of these roads within the site itself.

Milne Lane will run between Howick Street and Gallipoli Road in its current location. It will operate as a two-way access road, with the loading zone for the medical centre on the western side and access to the off-street car park to the south.

Gallipoli Road will connect to Rankin Street in the existing location. It will operate as a twoway access road, providing access to the off-street car park south of the medical centre, as well as to parking at the rear of the RSL building.

The car park immediately west of the medical centre will connect to both Howick Street and Rankin Street. This area is proposed to be restricted to doctors and other key staff, and in order to minimise the impact of any through traffic, it is recommended that remotely-operated boom gates be installed at either end of the car park.

Access to the off-street car park will be via a one way (clockwise) circulation road. This will run around the outside of the car park in roughly the same location as at present, and will also maintain access to the rear of properties on George and Russell Streets as well as the RSL loading dock in the south-west of the site.

AS2890.1 specifies that two-way roadways or ramps should have a minimum width of 5.5m, while one-way roadways or ramps should have a minimum width of 3.0m, (Section 2.5.2). Gallipoli Road is proposed to be 6.5m, while the two-way section of Milne Lane (Gallipoli to Howick) is proposed to be 5.5m. The one-way circulation road around the site is 5.8m minimum, while the ramps between levels of the car park are 3.9m minimum. All two-way and one-way roads and ramps therefore meet the minimum requirements.

Turning template assessment has been carried out for circulation of vehicles within the site, and is included in Appendix E. This has been carried out for a Medium Rigid Vehicle (the largest vehicle likely to use the site), and demonstrates that an MRV can complete all necessary movements through the site.

AS2890 specifies a variety of dimensions for car parking spaces and aisle widths, depending on the type of user and configuration of car parking. For a User Class 3 (specifically for parking stations and medical centres), Figure 2.2 of AS2890.1 specifies that 90 degree angle parking spaces should be 2.6m wide and 5.4m long, with a parking aisle width of 6.6m. All spaces within the various off-street parking areas (including the multi-level car park, the at-grade car

park east of the medical centre and the at-grade car parking at the rear of the RSL building) meet these criteria.

DCP 14 specifies the minimum parking spaces required for a development, depending on the land use type. The proposed building is a mixture of Medical Centre and Restaurant or Café (within the Bathurst CBD), and the number of spaces required for each component of the proposed building is summarised in Table 4-8 below.

| Use             | Rate                       | Unit                     | Car Parking<br>Spaces Required |
|-----------------|----------------------------|--------------------------|--------------------------------|
| Medical         | 1 per 50m <sup>2</sup> GFA | 10,119m <sup>2</sup> GFA | 202                            |
| Restaurant/café | 1 per 35m <sup>2</sup> GFA | 180m <sup>2</sup> GFA    | 5                              |
| Total           |                            |                          | 207                            |

The proposed development provides a total of 915 off-street parking spaces, which is sufficient to meet the total requirement of 527 spaces for the existing off-street car parking (320 spaces) plus the proposed building (207 spaces). The provision of additional parking (a further 388 spaces above the existing level plus what is required for the proposed development) will allow Council to cater for other parking demands in the area (in line with the direction of Council's *Bathurst CBD Car Parking Strategy 2013*).

The *Building Code of Australia* specifies a minimum of one space in 50 to be designated for persons with a disability for this class of building (healthcare building). Given that a total of 915 off-street parking spaces are proposed, a minimum 19 spaces should be designated. The proposed development includes at least 27 spaces designated for persons with a disability, and therefore provides adequate parking for persons with a disability.

It is concluded that the proposed development provides adequate numbers of off-street parking spaces to meet the requirements of the *Bathurst Regional Development Control Plan 2014 Chapter 14 – Parking*, and all matters for consideration under the DCP and *Australian Standard AS2890: Parking Facilities* have been addressed. The layout of the off-street parking area and access roads complies with the requirements of *AS2890*, with adequate provision made for persons with a disability.

## 4.3 Service and Delivery Vehicles

Service and delivery vehicles include deliveries of goods (linen, food and drink) and services (trades or maintenance persons), as well as collection of refuse.

As demonstrated in Appendix E, vehicles up to and including an MRV are able to negotiate through the site. Loading zones have been established to service vehicles travelling eastbound on Gallipoli Road and northbound on Milne Lane, and in order to discourage delivery vehicles from trying to enter the site via Milne Lane from Howick Street, it is recommended that signage be placed at the northern end of Milne Lane to restrict entry by vehicles over 6m in length or 2 tonnes in weight.

The proposed development provides loading zone and short term parking areas immediately south and east of the proposed medical centre. It is recommended that the area to the east of the building be signposted as a Loading Zone, while the area immediately south of the building

be signposted as a 15 minute car park (maximising flexibility of this area, which could be used for loading/unloading of goods, as well as drop off/pick up and taxis).

It is considered that the development provides appropriate facilities for service vehicles.

## 4.4 Pedestrian and Cyclist Impact

Access to the site will continue to be available from all four roads surrounding the site. Pedestrian safety within the site will be improved through the provision of dedicated footpaths (for example, between Machattie Lane and the car park/medical centre), pedestrian crossing points plus a sky bridge linking the first floor of the car park directly with the medical centre.

Bathurst Regional Development Control Plan 2014 Chapter 14 – Parking specifies requirements for provision of facilities for cyclists for both employees and visitors. This is summarised in Table 4-9, below.

| Use             | Employee Standard             | Visitor Standard               | Bicycle Parking<br>Spaces Required |
|-----------------|-------------------------------|--------------------------------|------------------------------------|
| Medical         | 10,091m <sup>2</sup> GFA      | 10,091m <sup>2</sup> GFA       |                                    |
|                 | @ 1 per 300m <sup>2</sup> GFA | @ 1 per 1000m <sup>2</sup> GFA |                                    |
|                 | = 33.6                        | = 10.1                         | 43.7                               |
| Restaurant/café | 180m <sup>2</sup> GFA         | 2 + 180m <sup>2</sup> GFA      |                                    |
|                 | @ 1 per 100m <sup>2</sup> GFA | @ 1 per 200m <sup>2</sup> GFA  |                                    |
|                 | = 1.8                         | = 2.9                          | 4.7                                |
| Total           | 35.4                          | 13.0                           | 48.4                               |
|                 |                               |                                | Round to 48                        |

| Table 4-9: | Bicvcle | Parking | Space | Requirements   |
|------------|---------|---------|-------|----------------|
| 10010 1 01 | 210,010 |         | opuou | roquironionito |

The proposed development provides parking for a total of 28 bicycles in the area adjacent to the multi level car park. Although this does not meet the requirements of the Bathurst DCP, it is sufficient to meet the requirements of 13 spaces for visitors, and as employees who ride their bicycles would be less likely to leave their bicycles in a public area while at work, is considered sufficient.

DCP 14 also requires the provision of shower facilities and change rooms based on the number of bicycle parking spaces. If 5 or more employee bicycle spaces are required, 1 shower facility for the first 5 employee bicycle spaces is to be provided, plus 1 for each 10 employee bicycle spaces thereafter. For the required 35 employee bicycle parking spaces, this equates to a total of four showers. One change room or direct access to a communal change room is to be provided for each shower (the change room may be a combined shower and change room). The proposed development incorporates shower and change facilities on each of the five levels of the proposed medical centre, and therefore meets the requirements of DCP 14 in this regard.

It is considered that the proposed development provides appropriate facilities for pedestrians and cyclists.

## 5 CONCLUSIONS AND RECOMMENDATIONS

It is concluded that:

- Traffic surveys and modelling of nearby intersections (including accesses to site) show that the intersections currently operate at an excellent Level of Service (LOS A, the highest level) or better. The midblock level of service on all roads surrounding the site is satisfactory (LOS C) or better;
- Parking surveys carried out on a typical weekday show that there is generally a satisfactory amount of on-street parking in the vicinity of the site to meet current demand, although the off-street parking experiences a high level of demand;
- The proposed development is anticipated to generate 571 vehicle trips per hour in the AM peak hour (321 from the proposed medical centre plus 250 from augmentation of the off-street car park) and 692 vehicle trips per hour in the PM (392 plus 300) peak hour, which will not have a significant impact on the performance of the road network in the immediate vicinity of the site (including nearby intersections, midblock sections of road and site accesses);
- The provision of 915 off-street parking spaces meets the minimum requirements for the proposed development under the *Bathurst Regional Development Control Plan 2014 Chapter 14 – Parking*, while the car parking and access driveways satisfactorily address all matters for consideration under the DCP and *Australian Standard AS2890*. Adequate provision has been made for persons with a disability;
- Adequate provision has been made for servicing and delivery vehicles; and
- Adequate provision has been made for pedestrians and cyclists.

It is recommended that:

- A right turn lane be provided for northbound vehicles on Rankin Street turning right into Gallipoli Lane;
- Entry into Milne Lane from Howick Street be restricted to vehicles under 6m in length and/or 2 tonnes in weight;
- Remotely-activated boom gates should be installed at both vehicle access points into the at-grade off-street car park located immediately west of the proposed medical centre; and
- Signage be installed in the parking adjacent to the medical centre designating a Loading Zone to the east (Milne Lane) and 15 Minute Parking to the south (Gallipoli Road).

## **APPENDIX A – INTERSECTION ANALYSIS: EXISTING**

#### V Site: [Russell George\_PM\_Existing (Site Folder: General)]

Russell Street and George Street, Bathurst PM Peak Period Existing Volumes Site Category: (None) Roundabout

| Vehi         | cle M  | ovemen           | t Perfo   | rmance           |           |              |     |                     |               |               |                |                   |              |                |
|--------------|--------|------------------|-----------|------------------|-----------|--------------|-----|---------------------|---------------|---------------|----------------|-------------------|--------------|----------------|
| Mov<br>ID    | Turn   | INP<br>VOLU      |           | DEM<br>FLO       |           | Deg.<br>Satn |     | Level of<br>Service | 95% BA<br>QUI | ACK OF<br>EUE | Prop. E<br>Que | Effective<br>Stop | Aver.<br>No. | Aver.<br>Speed |
|              |        | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | v/c          | sec |                     | [ Veh.<br>veh | Dist]<br>m    |                | Rate              | Cycles       | km/h           |
| Sout         | h: Geo | rge (S)          |           |                  |           |              |     |                     |               |               |                |                   |              |                |
| 1            | L2     | 35               | 5.0       | 37               | 5.0       | 0.049        | 6.2 | LOS A               | 0.2           | 1.8           | 0.54           | 0.59              | 0.54         | 45.8           |
| 2            | T1     | 278              | 5.0       | 293              | 5.0       | 0.271        | 5.1 | LOS A               | 1.8           | 13.0          | 0.58           | 0.58              | 0.58         | 46.6           |
| 3            | R2     | 25               | 5.0       | 26               | 5.0       | 0.271        | 9.0 | LOS A               | 1.8           | 13.0          | 0.58           | 0.58              | 0.58         | 46.5           |
| Appr         | oach   | 338              | 5.0       | 356              | 5.0       | 0.271        | 5.5 | LOS A               | 1.8           | 13.0          | 0.58           | 0.59              | 0.58         | 46.5           |
| East:        | Russe  | ell (E)          |           |                  |           |              |     |                     |               |               |                |                   |              |                |
| 4            | L2     | 56               | 5.0       | 59               | 5.0       | 0.077        | 6.2 | LOS A               | 0.4           | 2.8           | 0.53           | 0.61              | 0.53         | 45.8           |
| 5            | T1     | 176              | 5.0       | 185              | 5.0       | 0.268        | 5.0 | LOS A               | 1.7           | 12.5          | 0.56           | 0.63              | 0.56         | 46.2           |
| 6            | R2     | 129              | 5.0       | 136              | 5.0       | 0.268        | 8.9 | LOS A               | 1.7           | 12.5          | 0.56           | 0.63              | 0.56         | 46.1           |
| Appr         | oach   | 361              | 5.0       | 380              | 5.0       | 0.268        | 6.6 | LOS A               | 1.7           | 12.5          | 0.55           | 0.62              | 0.55         | 46.1           |
| North        | n: Geo | rge (N)          |           |                  |           |              |     |                     |               |               |                |                   |              |                |
| 7            | L2     | 67               | 5.0       | 71               | 5.0       | 0.079        | 4.9 | LOS A               | 0.4           | 3.0           | 0.40           | 0.52              | 0.40         | 46.3           |
| 8            | T1     | 276              | 5.0       | 291              | 5.0       | 0.252        | 4.1 | LOS A               | 1.6           | 11.8          | 0.40           | 0.49              | 0.40         | 47.1           |
| 9            | R2     | 54               | 5.0       | 57               | 5.0       | 0.252        | 8.0 | LOS A               | 1.6           | 11.8          | 0.40           | 0.49              | 0.40         | 47.0           |
| Appr         | oach   | 397              | 5.0       | 418              | 5.0       | 0.252        | 4.8 | LOS A               | 1.6           | 11.8          | 0.40           | 0.49              | 0.40         | 46.9           |
| West         | : Russ | ell (W)          |           |                  |           |              |     |                     |               |               |                |                   |              |                |
| 10           | L2     | 77               | 5.0       | 81               | 5.0       | 0.093        | 6.2 | LOS A               | 0.5           | 3.7           | 0.58           | 0.63              | 0.58         | 45.8           |
| 11           | T1     | 130              | 5.0       | 137              | 5.0       | 0.138        | 5.3 | LOS A               | 0.8           | 6.1           | 0.57           | 0.59              | 0.57         | 46.6           |
| 12           | R2     | 17               | 5.0       | 18               | 5.0       | 0.138        | 9.2 | LOS A               | 0.8           | 6.1           | 0.57           | 0.59              | 0.57         | 46.5           |
| Appr         | oach   | 224              | 5.0       | 236              | 5.0       | 0.138        | 5.9 | LOS A               | 0.8           | 6.1           | 0.58           | 0.60              | 0.58         | 46.3           |
| All<br>Vehic | cles   | 1320             | 5.0       | 1389             | 5.0       | 0.271        | 5.7 | LOS A               | 1.8           | 13.0          | 0.52           | 0.57              | 0.52         | 46.5           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:09 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

#### V Site: [Howick Rankin\_AM\_Existing (Site Folder: General)]

Howick Street and Rankin Street, Bathurst AM Peak Period Existing Volumes Site Category: (None) Roundabout

| Vehi              | cle M   | ovemen           | t Perfo   | rmance           |           |              |     |                     |               |             |                |                   |        |                |
|-------------------|---------|------------------|-----------|------------------|-----------|--------------|-----|---------------------|---------------|-------------|----------------|-------------------|--------|----------------|
| Mov<br>ID         | Turn    | INP<br>VOLL      | JMES      | DEM,<br>FLO      | WS        | Deg.<br>Satn |     | Level of<br>Service | QUE           | ACK OF      | Prop. I<br>Que | Effective<br>Stop |        | Aver.<br>Speed |
|                   |         | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | v/c          | sec |                     | [ Veh.<br>veh | Dist ]<br>m |                | Rate              | Cycles | km/h           |
| South: Rankin (S) |         |                  |           |                  |           |              |     |                     |               |             |                |                   |        |                |
| 1                 | L2      | 9                | 5.0       | 9                | 5.0       | 0.010        | 4.3 | LOS A               | 0.0           | 0.3         | 0.28           | 0.45              | 0.28   | 46.6           |
| 2                 | T1      | 133              | 5.0       | 140              | 5.0       | 0.151        | 3.7 | LOS A               | 0.9           | 6.4         | 0.27           | 0.48              | 0.27   | 47.1           |
| 3                 | R2      | 80               | 5.0       | 84               | 5.0       | 0.151        | 7.6 | LOS A               | 0.9           | 6.4         | 0.27           | 0.48              | 0.27   | 47.0           |
| Appr              | oach    | 222              | 5.0       | 234              | 5.0       | 0.151        | 5.1 | LOS A               | 0.9           | 6.4         | 0.27           | 0.48              | 0.27   | 47.0           |
| East:             | Howic   | ck (E)           |           |                  |           |              |     |                     |               |             |                |                   |        |                |
| 4                 | L2      | 67               | 5.0       | 71               | 5.0       | 0.070        | 5.4 | LOS A               | 0.4           | 2.7         | 0.51           | 0.57              | 0.51   | 46.0           |
| 5                 | T1      | 46               | 5.0       | 48               | 5.0       | 0.069        | 4.7 | LOS A               | 0.4           | 2.8         | 0.50           | 0.57              | 0.50   | 46.4           |
| 6                 | R2      | 32               | 5.0       | 34               | 5.0       | 0.069        | 8.6 | LOS A               | 0.4           | 2.8         | 0.50           | 0.57              | 0.50   | 46.3           |
| Appr              | oach    | 145              | 5.0       | 153              | 5.0       | 0.070        | 5.9 | LOS A               | 0.4           | 2.8         | 0.50           | 0.57              | 0.50   | 46.2           |
| North             | n: Ranl | kin (N)          |           |                  |           |              |     |                     |               |             |                |                   |        |                |
| 7                 | L2      | 106              | 5.0       | 112              | 5.0       | 0.118        | 5.1 | LOS A               | 0.6           | 4.4         | 0.43           | 0.55              | 0.43   | 46.2           |
| 8                 | T1      | 314              | 5.0       | 331              | 5.0       | 0.259        | 4.4 | LOS A               | 1.6           | 11.5        | 0.43           | 0.49              | 0.43   | 47.2           |
| 9                 | R2      | 15               | 5.0       | 16               | 5.0       | 0.259        | 8.2 | LOS A               | 1.6           | 11.5        | 0.43           | 0.49              | 0.43   | 47.1           |
| Appr              | oach    | 435              | 5.0       | 458              | 5.0       | 0.259        | 4.7 | LOS A               | 1.6           | 11.5        | 0.43           | 0.50              | 0.43   | 46.9           |
| West              | : Howi  | ck (W)           |           |                  |           |              |     |                     |               |             |                |                   |        |                |
| 10                | L2      | 19               | 5.0       | 20               | 5.0       | 0.024        | 5.3 | LOS A               | 0.1           | 0.8         | 0.43           | 0.52              | 0.43   | 46.2           |
| 11                | T1      | 114              | 5.0       | 120              | 5.0       | 0.111        | 4.3 | LOS A               | 0.6           | 4.3         | 0.41           | 0.50              | 0.41   | 47.1           |
| 12                | R2      | 23               | 5.0       | 24               | 5.0       | 0.111        | 8.2 | LOS A               | 0.6           | 4.3         | 0.41           | 0.50              | 0.41   | 47.0           |
| Appr              | oach    | 156              | 5.0       | 164              | 5.0       | 0.111        | 5.0 | LOS A               | 0.6           | 4.3         | 0.41           | 0.50              | 0.41   | 46.9           |
| All<br>Vehic      | cles    | 958              | 5.0       | 1008             | 5.0       | 0.259        | 5.0 | LOS A               | 1.6           | 11.5        | 0.40           | 0.51              | 0.40   | 46.8           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:03 PM

Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

#### V Site: [Howick George\_AM\_Existing (Site Folder: General)]

Howick Street and George Street, Bathurst AM Peak Period Existing Volumes Site Category: (None) Roundabout

| Vehi         | cle M   | ovemen                 | t Perfo | rmance                |     |              |      |                     |     |                         |                |                           |                        |                |
|--------------|---------|------------------------|---------|-----------------------|-----|--------------|------|---------------------|-----|-------------------------|----------------|---------------------------|------------------------|----------------|
| Mov<br>ID    | Turn    | INP<br>VOLU<br>[ Total |         | DEM<br>FLO<br>[ Total |     | Deg.<br>Satn |      | Level of<br>Service |     | ACK OF<br>EUE<br>Dist ] | Prop. E<br>Que | Effective<br>Stop<br>Rate | Aver.<br>No.<br>Cycles | Aver.<br>Speed |
|              |         | veh/h                  | %       | veh/h                 | %   | v/c          | sec  |                     | veh | m                       |                | Trate                     | Cycles                 | km/h           |
| South        | n: Geo  | rge (S)                |         |                       |     |              |      |                     |     |                         |                |                           |                        |                |
| 1            | L2      | 45                     | 5.0     | 47                    | 5.0 | 0.277        | 4.8  | LOS A               | 1.7 | 12.5                    | 0.50           | 0.58                      | 0.50                   | 45.7           |
| 2            | T1      | 157                    | 5.0     | 165                   | 5.0 | 0.277        | 4.8  | LOS A               | 1.7 | 12.5                    | 0.50           | 0.58                      | 0.50                   | 46.6           |
| 3            | R2      | 81                     | 5.0     | 85                    | 5.0 | 0.277        | 8.7  | LOS A               | 1.7 | 12.5                    | 0.50           | 0.58                      | 0.50                   | 46.6           |
| Appro        | oach    | 283                    | 5.0     | 298                   | 5.0 | 0.277        | 5.9  | LOS A               | 1.7 | 12.5                    | 0.50           | 0.58                      | 0.50                   | 46.5           |
| East:        | Howic   | ck (E)                 |         |                       |     |              |      |                     |     |                         |                |                           |                        |                |
| 4            | L2      | 78                     | 5.0     | 82                    | 5.0 | 0.285        | 7.0  | LOS A               | 1.9 | 13.6                    | 0.73           | 0.77                      | 0.73                   | 44.8           |
| 5            | T1      | 78                     | 5.0     | 82                    | 5.0 | 0.285        | 7.0  | LOS A               | 1.9 | 13.6                    | 0.73           | 0.77                      | 0.73                   | 45.8           |
| 6            | R2      | 58                     | 5.0     | 61                    | 5.0 | 0.285        | 10.9 | LOS A               | 1.9 | 13.6                    | 0.73           | 0.77                      | 0.73                   | 45.7           |
| Appro        | oach    | 214                    | 5.0     | 225                   | 5.0 | 0.285        | 8.1  | LOS A               | 1.9 | 13.6                    | 0.73           | 0.77                      | 0.73                   | 45.4           |
| North        | n: Geor | rge (N)                |         |                       |     |              |      |                     |     |                         |                |                           |                        |                |
| 7            | L2      | 43                     | 5.0     | 45                    | 5.0 | 0.522        | 5.5  | LOS A               | 4.0 | 29.3                    | 0.64           | 0.64                      | 0.64                   | 45.3           |
| 8            | T1      | 393                    | 5.0     | 414                   | 5.0 | 0.522        | 5.5  | LOS A               | 4.0 | 29.3                    | 0.64           | 0.64                      | 0.64                   | 46.3           |
| 9            | R2      | 97                     | 5.0     | 102                   | 5.0 | 0.522        | 9.4  | LOS A               | 4.0 | 29.3                    | 0.64           | 0.64                      | 0.64                   | 46.2           |
| Appro        | oach    | 533                    | 5.0     | 561                   | 5.0 | 0.522        | 6.2  | LOS A               | 4.0 | 29.3                    | 0.64           | 0.64                      | 0.64                   | 46.2           |
| West         | : Howi  | ck (W)                 |         |                       |     |              |      |                     |     |                         |                |                           |                        |                |
| 10           | L2      | 60                     | 5.0     | 63                    | 5.0 | 0.254        | 5.1  | LOS A               | 1.5 | 11.1                    | 0.54           | 0.61                      | 0.54                   | 45.7           |
| 11           | T1      | 135                    | 5.0     | 142                   | 5.0 | 0.254        | 5.2  | LOS A               | 1.5 | 11.1                    | 0.54           | 0.61                      | 0.54                   | 46.7           |
| 12           | R2      | 50                     | 5.0     | 53                    | 5.0 | 0.254        | 9.1  | LOS A               | 1.5 | 11.1                    | 0.54           | 0.61                      | 0.54                   | 46.6           |
| Appro        | oach    | 245                    | 5.0     | 258                   | 5.0 | 0.254        | 6.0  | LOS A               | 1.5 | 11.1                    | 0.54           | 0.61                      | 0.54                   | 46.4           |
| All<br>Vehic | les     | 1275                   | 5.0     | 1342                  | 5.0 | 0.522        | 6.4  | LOS A               | 4.0 | 29.3                    | 0.61           | 0.64                      | 0.61                   | 46.2           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:04 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

#### V Site: [Russell Rankin\_AM\_Existing (Site Folder: General)]

Russell Street and Rankin Street, Bathurst AM Peak Period Existing Volumes Site Category: (None) Roundabout

| Vehi         | cle M   | ovemen                 | t Perfo | rmance                 |           |              |     |                     |                         |     |                |                           |                        |                |
|--------------|---------|------------------------|---------|------------------------|-----------|--------------|-----|---------------------|-------------------------|-----|----------------|---------------------------|------------------------|----------------|
| Mov<br>ID    | Turn    | INP<br>VOLU<br>[ Total |         | لDEM<br>FLO<br>[ Total | WS<br>HV] | Deg.<br>Satn |     | Level of<br>Service | 95% BA<br>QUE<br>[ Veh. |     | Prop. E<br>Que | Effective<br>Stop<br>Rate | Aver.<br>No.<br>Cycles | Aver.<br>Speed |
|              |         | veh/h                  | %       | veh/h                  | %         | v/c          | sec |                     | veh                     | m   |                |                           |                        | km/h           |
| South        | n: Ran  | kin (S)                |         |                        |           |              |     |                     |                         |     |                |                           |                        |                |
| 1            | L2      | 9                      | 5.0     | 9                      | 5.0       | 0.011        | 5.2 | LOS A               | 0.1                     | 0.4 | 0.42           | 0.49                      | 0.42                   | 46.2           |
| 2            | T1      | 158                    | 5.0     | 166                    | 5.0       | 0.147        | 4.3 | LOS A               | 0.8                     | 6.1 | 0.41           | 0.49                      | 0.41                   | 47.1           |
| 3            | R2      | 26                     | 5.0     | 27                     | 5.0       | 0.147        | 8.1 | LOS A               | 0.8                     | 6.1 | 0.41           | 0.49                      | 0.41                   | 47.0           |
| Appro        | oach    | 193                    | 5.0     | 203                    | 5.0       | 0.147        | 4.8 | LOS A               | 0.8                     | 6.1 | 0.41           | 0.49                      | 0.41                   | 47.0           |
| East:        | Russe   | ell (E)                |         |                        |           |              |     |                     |                         |     |                |                           |                        |                |
| 4            | L2      | 24                     | 5.0     | 25                     | 5.0       | 0.030        | 5.4 | LOS A               | 0.1                     | 1.1 | 0.45           | 0.53                      | 0.45                   | 46.2           |
| 5            | T1      | 92                     | 5.0     | 97                     | 5.0       | 0.141        | 4.4 | LOS A               | 0.8                     | 5.9 | 0.43           | 0.56                      | 0.43                   | 46.5           |
| 6            | R2      | 82                     | 5.0     | 86                     | 5.0       | 0.141        | 8.3 | LOS A               | 0.8                     | 5.9 | 0.43           | 0.56                      | 0.43                   | 46.4           |
| Appro        | oach    | 198                    | 5.0     | 208                    | 5.0       | 0.141        | 6.1 | LOS A               | 0.8                     | 5.9 | 0.43           | 0.56                      | 0.43                   | 46.4           |
| North        | n: Ranl | kin (N)                |         |                        |           |              |     |                     |                         |     |                |                           |                        |                |
| 7            | L2      | 122                    | 5.0     | 128                    | 5.0       | 0.118        | 4.7 | LOS A               | 0.6                     | 4.6 | 0.40           | 0.52                      | 0.40                   | 46.3           |
| 8            | T1      | 180                    | 5.0     | 189                    | 5.0       | 0.178        | 4.2 | LOS A               | 1.0                     | 7.6 | 0.39           | 0.50                      | 0.39                   | 47.0           |
| 9            | R2      | 48                     | 5.0     | 51                     | 5.0       | 0.178        | 8.0 | LOS A               | 1.0                     | 7.6 | 0.39           | 0.50                      | 0.39                   | 46.9           |
| Appro        | oach    | 350                    | 5.0     | 368                    | 5.0       | 0.178        | 4.9 | LOS A               | 1.0                     | 7.6 | 0.40           | 0.51                      | 0.40                   | 46.8           |
| West         | : Russ  | ell (W)                |         |                        |           |              |     |                     |                         |     |                |                           |                        |                |
| 10           | L2      | 22                     | 5.0     | 23                     | 5.0       | 0.028        | 5.5 | LOS A               | 0.1                     | 1.0 | 0.45           | 0.53                      | 0.45                   | 46.2           |
| 11           | T1      | 147                    | 5.0     | 155                    | 5.0       | 0.137        | 4.4 | LOS A               | 0.8                     | 5.6 | 0.44           | 0.51                      | 0.44                   | 47.0           |
| 12           | R2      | 20                     | 5.0     | 21                     | 5.0       | 0.137        | 8.3 | LOS A               | 0.8                     | 5.6 | 0.44           | 0.51                      | 0.44                   | 47.0           |
| Appro        | oach    | 189                    | 5.0     | 199                    | 5.0       | 0.137        | 5.0 | LOS A               | 0.8                     | 5.6 | 0.44           | 0.51                      | 0.44                   | 46.9           |
| All<br>Vehic | les     | 930                    | 5.0     | 979                    | 5.0       | 0.178        | 5.2 | LOS A               | 1.0                     | 7.6 | 0.41           | 0.52                      | 0.41                   | 46.8           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:05 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

#### V Site: [Russell George\_AM\_Existing (Site Folder: General)]

Russell Street and George Street, Bathurst AM Peak Period Existing Volumes Site Category: (None) Roundabout

| Vehi         | cle M   | ovemen                 | t Perfo | rmance                |     |              |     |                     |     |      |                |                           |                        |               |
|--------------|---------|------------------------|---------|-----------------------|-----|--------------|-----|---------------------|-----|------|----------------|---------------------------|------------------------|---------------|
| Mov<br>ID    | Turn    | INP<br>VOLU<br>[ Total |         | DEM<br>FLO<br>[ Total |     | Deg.<br>Satn |     | Level of<br>Service |     |      | Prop. E<br>Que | Effective<br>Stop<br>Rate | Aver.<br>No.<br>Cycles | Aver<br>Speec |
|              |         | veh/h                  | %       | veh/h                 | %   | v/c          | sec |                     | veh | m    |                | Trate                     | Cycles                 | km/h          |
| Sout         | n: Geo  | rge (S)                |         |                       |     |              |     |                     |     |      |                |                           |                        |               |
| 1            | L2      | 26                     | 5.0     | 27                    | 5.0 | 0.034        | 5.6 | LOS A               | 0.2 | 1.2  | 0.49           | 0.55                      | 0.49                   | 46.1          |
| 2            | T1      | 215                    | 5.0     | 226                   | 5.0 | 0.203        | 4.6 | LOS A               | 1.3 | 9.1  | 0.50           | 0.53                      | 0.50                   | 46.9          |
| 3            | R2      | 25                     | 5.0     | 26                    | 5.0 | 0.203        | 8.5 | LOS A               | 1.3 | 9.1  | 0.50           | 0.53                      | 0.50                   | 46.8          |
| Appr         | oach    | 266                    | 5.0     | 280                   | 5.0 | 0.203        | 5.1 | LOS A               | 1.3 | 9.1  | 0.49           | 0.53                      | 0.49                   | 46.8          |
| East:        | Russe   | ell (E)                |         |                       |     |              |     |                     |     |      |                |                           |                        |               |
| 4            | L2      | 51                     | 5.0     | 54                    | 5.0 | 0.075        | 6.7 | LOS A               | 0.4 | 2.9  | 0.59           | 0.64                      | 0.59                   | 45.5          |
| 5            | T1      | 151                    | 5.0     | 159                   | 5.0 | 0.217        | 5.4 | LOS A               | 1.4 | 10.2 | 0.60           | 0.64                      | 0.60                   | 46.2          |
| 6            | R2      | 80                     | 5.0     | 84                    | 5.0 | 0.217        | 9.2 | LOS A               | 1.4 | 10.2 | 0.60           | 0.64                      | 0.60                   | 46.1          |
| Appr         | oach    | 282                    | 5.0     | 297                   | 5.0 | 0.217        | 6.7 | LOS A               | 1.4 | 10.2 | 0.60           | 0.64                      | 0.60                   | 46.0          |
| North        | n: Geor | rge (N)                |         |                       |     |              |     |                     |     |      |                |                           |                        |               |
| 7            | L2      | 88                     | 5.0     | 93                    | 5.0 | 0.113        | 5.7 | LOS A               | 0.6 | 4.3  | 0.50           | 0.59                      | 0.50                   | 46.0          |
| 8            | T1      | 331                    | 5.0     | 348                   | 5.0 | 0.318        | 4.7 | LOS A               | 2.1 | 15.6 | 0.53           | 0.55                      | 0.53                   | 46.7          |
| 9            | R2      | 52                     | 5.0     | 55                    | 5.0 | 0.318        | 8.6 | LOS A               | 2.1 | 15.6 | 0.53           | 0.55                      | 0.53                   | 46.7          |
| Appr         | oach    | 471                    | 5.0     | 496                   | 5.0 | 0.318        | 5.3 | LOS A               | 2.1 | 15.6 | 0.52           | 0.56                      | 0.52                   | 46.6          |
| West         | : Russ  | ell (W)                |         |                       |     |              |     |                     |     |      |                |                           |                        |               |
| 10           | L2      | 79                     | 5.0     | 83                    | 5.0 | 0.097        | 5.8 | LOS A               | 0.5 | 3.7  | 0.51           | 0.59                      | 0.51                   | 46.0          |
| 11           | T1      | 207                    | 5.0     | 218                   | 5.0 | 0.210        | 4.8 | LOS A               | 1.3 | 9.3  | 0.51           | 0.56                      | 0.51                   | 46.7          |
| 12           | R2      | 37                     | 5.0     | 39                    | 5.0 | 0.210        | 8.7 | LOS A               | 1.3 | 9.3  | 0.51           | 0.56                      | 0.51                   | 46.7          |
| Appro        | oach    | 323                    | 5.0     | 340                   | 5.0 | 0.210        | 5.5 | LOS A               | 1.3 | 9.3  | 0.51           | 0.57                      | 0.51                   | 46.5          |
| All<br>Vehic | cles    | 1342                   | 5.0     | 1413                  | 5.0 | 0.318        | 5.6 | LOS A               | 2.1 | 15.6 | 0.53           | 0.57                      | 0.53                   | 46.5          |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:06 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9
#### V Site: [Howick Rankin\_PM\_Existing (Site Folder: General)]

Howick Street and Rankin Street, Bathurst PM Peak Period Existing Volumes Site Category: (None) Roundabout

| Vehi         | cle M   | ovemen                 | t Perfo     | rmance                 |           |              |     |                     |                         |      |                |                           |                        |                |
|--------------|---------|------------------------|-------------|------------------------|-----------|--------------|-----|---------------------|-------------------------|------|----------------|---------------------------|------------------------|----------------|
| Mov<br>ID    | Turn    | INP<br>VOLU<br>[ Total | IMES<br>HV] | DEM/<br>FLO<br>[ Total | WS<br>HV] | Deg.<br>Satn |     | Level of<br>Service | 95% BA<br>QUI<br>[ Veh. |      | Prop. E<br>Que | Effective<br>Stop<br>Rate | Aver.<br>No.<br>Cycles | Aver.<br>Speed |
| 0            |         | veh/h                  | %           | veh/h                  | %         | v/c          | sec |                     | veh                     | m    |                |                           |                        | km/h           |
|              |         | kin (S)                |             |                        |           |              |     |                     |                         |      |                |                           |                        |                |
| 1            | L2      | 17                     | 5.0         | 18                     | 5.0       | 0.021        | 5.2 | LOS A               | 0.1                     | 0.7  | 0.42           | 0.51                      | 0.42                   | 46.2           |
| 2            | T1      | 218                    | 5.0         | 229                    | 5.0       | 0.252        | 4.4 | LOS A               | 1.6                     | 11.4 | 0.44           | 0.54                      | 0.44                   | 46.7           |
| 3            | R2      | 99                     | 5.0         | 104                    | 5.0       | 0.252        | 8.2 | LOS A               | 1.6                     | 11.4 | 0.44           | 0.54                      | 0.44                   | 46.6           |
| Appr         | oach    | 334                    | 5.0         | 352                    | 5.0       | 0.252        | 5.5 | LOS A               | 1.6                     | 11.4 | 0.44           | 0.54                      | 0.44                   | 46.7           |
| East:        | Howie   | ck (E)                 |             |                        |           |              |     |                     |                         |      |                |                           |                        |                |
| 4            | L2      | 57                     | 5.0         | 60                     | 5.0       | 0.067        | 5.5 | LOS A               | 0.3                     | 2.5  | 0.48           | 0.56                      | 0.48                   | 46.1           |
| 5            | T1      | 72                     | 5.0         | 76                     | 5.0       | 0.142        | 4.5 | LOS A               | 0.8                     | 6.0  | 0.47           | 0.59                      | 0.47                   | 46.2           |
| 6            | R2      | 97                     | 5.0         | 102                    | 5.0       | 0.142        | 8.4 | LOS A               | 0.8                     | 6.0  | 0.47           | 0.59                      | 0.47                   | 46.1           |
| Appr         | oach    | 226                    | 5.0         | 238                    | 5.0       | 0.142        | 6.4 | LOS A               | 0.8                     | 6.0  | 0.47           | 0.58                      | 0.47                   | 46.1           |
| North        | n: Ranl | kin (N)                |             |                        |           |              |     |                     |                         |      |                |                           |                        |                |
| 7            | L2      | 113                    | 5.0         | 119                    | 5.0       | 0.117        | 5.0 | LOS A               | 0.6                     | 4.4  | 0.42           | 0.54                      | 0.42                   | 46.2           |
| 8            | T1      | 216                    | 5.0         | 227                    | 5.0       | 0.211        | 4.3 | LOS A               | 1.2                     | 9.0  | 0.42           | 0.51                      | 0.42                   | 47.0           |
| 9            | R2      | 50                     | 5.0         | 53                     | 5.0       | 0.211        | 8.2 | LOS A               | 1.2                     | 9.0  | 0.42           | 0.51                      | 0.42                   | 46.9           |
| Appr         | oach    | 379                    | 5.0         | 399                    | 5.0       | 0.211        | 5.0 | LOS A               | 1.2                     | 9.0  | 0.42           | 0.52                      | 0.42                   | 46.8           |
| West         | : Howi  | ck (W)                 |             |                        |           |              |     |                     |                         |      |                |                           |                        |                |
| 10           | L2      | 29                     | 5.0         | 31                     | 5.0       | 0.042        | 6.6 | LOS A               | 0.2                     | 1.5  | 0.56           | 0.61                      | 0.56                   | 45.5           |
| 11           | T1      | 97                     | 5.0         | 102                    | 5.0       | 0.107        | 5.1 | LOS A               | 0.6                     | 4.5  | 0.54           | 0.57                      | 0.54                   | 46.6           |
| 12           | R2      | 19                     | 5.0         | 20                     | 5.0       | 0.107        | 9.0 | LOS A               | 0.6                     | 4.5  | 0.54           | 0.57                      | 0.54                   | 46.5           |
| Appr         | oach    | 145                    | 5.0         | 153                    | 5.0       | 0.107        | 5.9 | LOS A               | 0.6                     | 4.5  | 0.55           | 0.58                      | 0.55                   | 46.4           |
| All<br>Vehic | cles    | 1084                   | 5.0         | 1141                   | 5.0       | 0.252        | 5.6 | LOS A               | 1.6                     | 11.4 | 0.45           | 0.55                      | 0.45                   | 46.5           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:06 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

#### V Site: [Howick George\_PM\_Existing (Site Folder: General)]

Howick Street and George Street, Bathurst PM Peak Period Existing Volumes Site Category: (None) Roundabout

| Vehi         | cle M  | ovemen           | t Perfo   | rmance           |           |              |      |                     |               |               |                |                   |              |                |
|--------------|--------|------------------|-----------|------------------|-----------|--------------|------|---------------------|---------------|---------------|----------------|-------------------|--------------|----------------|
| Mov<br>ID    | Turn   | INP<br>VOLU      |           | DEM/<br>FLO      |           | Deg.<br>Satn |      | Level of<br>Service | 95% BA<br>QUI | ACK OF<br>EUE | Prop. E<br>Que | Effective<br>Stop | Aver.<br>No. | Aver.<br>Speed |
|              |        | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | v/c          | sec  |                     | [ Veh.<br>veh | Dist]<br>m    |                | Rate              | Cycles       | km/h           |
| Sout         | h: Geo | rge (S)          |           |                  |           |              |      |                     |               |               |                |                   |              |                |
| 1            | L2     | 44               | 5.0       | 46               | 5.0       | 0.464        | 5.5  | LOS A               | 3.4           | 24.7          | 0.64           | 0.65              | 0.64         | 45.3           |
| 2            | T1     | 319              | 5.0       | 336              | 5.0       | 0.464        | 5.6  | LOS A               | 3.4           | 24.7          | 0.64           | 0.65              | 0.64         | 46.3           |
| 3            | R2     | 90               | 5.0       | 95               | 5.0       | 0.464        | 9.5  | LOS A               | 3.4           | 24.7          | 0.64           | 0.65              | 0.64         | 46.2           |
| Appr         | oach   | 453              | 5.0       | 477              | 5.0       | 0.464        | 6.4  | LOS A               | 3.4           | 24.7          | 0.64           | 0.65              | 0.64         | 46.2           |
| East:        | Howig  | ck (E)           |           |                  |           |              |      |                     |               |               |                |                   |              |                |
| 4            | L2     | 110              | 5.0       | 116              | 5.0       | 0.357        | 5.8  | LOS A               | 2.4           | 17.4          | 0.64           | 0.70              | 0.64         | 45.2           |
| 5            | T1     | 101              | 5.0       | 106              | 5.0       | 0.357        | 5.8  | LOS A               | 2.4           | 17.4          | 0.64           | 0.70              | 0.64         | 46.2           |
| 6            | R2     | 110              | 5.0       | 116              | 5.0       | 0.357        | 9.7  | LOS A               | 2.4           | 17.4          | 0.64           | 0.70              | 0.64         | 46.1           |
| Appr         | oach   | 321              | 5.0       | 338              | 5.0       | 0.357        | 7.2  | LOS A               | 2.4           | 17.4          | 0.64           | 0.70              | 0.64         | 45.8           |
| North        | n: Geo | rge (N)          |           |                  |           |              |      |                     |               |               |                |                   |              |                |
| 7            | L2     | 55               | 5.0       | 58               | 5.0       | 0.392        | 5.4  | LOS A               | 2.7           | 19.8          | 0.61           | 0.64              | 0.61         | 45.4           |
| 8            | T1     | 240              | 5.0       | 253              | 5.0       | 0.392        | 5.5  | LOS A               | 2.7           | 19.8          | 0.61           | 0.64              | 0.61         | 46.4           |
| 9            | R2     | 81               | 5.0       | 85               | 5.0       | 0.392        | 9.4  | LOS A               | 2.7           | 19.8          | 0.61           | 0.64              | 0.61         | 46.3           |
| Appr         | oach   | 376              | 5.0       | 396              | 5.0       | 0.392        | 6.3  | LOS A               | 2.7           | 19.8          | 0.61           | 0.64              | 0.61         | 46.2           |
| West         | : Howi | ck (W)           |           |                  |           |              |      |                     |               |               |                |                   |              |                |
| 10           | L2     | 132              | 5.0       | 139              | 5.0       | 0.435        | 7.4  | LOS A               | 3.1           | 22.8          | 0.78           | 0.80              | 0.79         | 44.9           |
| 11           | T1     | 169              | 5.0       | 178              | 5.0       | 0.435        | 7.5  | LOS A               | 3.1           | 22.8          | 0.78           | 0.80              | 0.79         | 45.9           |
| 12           | R2     | 37               | 5.0       | 39               | 5.0       | 0.435        | 11.4 | LOS A               | 3.1           | 22.8          | 0.78           | 0.80              | 0.79         | 45.8           |
| Appr         | oach   | 338              | 5.0       | 356              | 5.0       | 0.435        | 7.9  | LOS A               | 3.1           | 22.8          | 0.78           | 0.80              | 0.79         | 45.5           |
| All<br>Vehic | cles   | 1488             | 5.0       | 1566             | 5.0       | 0.464        | 6.9  | LOS A               | 3.4           | 24.7          | 0.67           | 0.69              | 0.67         | 46.0           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:07 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

#### V Site: [Russell Rankin\_PM\_Existing (Site Folder: General)]

Russell Street and Rankin Street, Bathurst PM Peak Period Existing Volumes Site Category: (None) Roundabout

| Vehi         | cle M   | ovemen      |      | rmance      |      |              |       |                     |        |               |                |                  |        |                |
|--------------|---------|-------------|------|-------------|------|--------------|-------|---------------------|--------|---------------|----------------|------------------|--------|----------------|
| Mov<br>ID    | Turn    | INP<br>VOLL |      | DEM.<br>FLO |      | Deg.<br>Satn |       | Level of<br>Service | 95% BA | ACK OF<br>EUE | Prop. E<br>Que | ffective<br>Stop | Aver.  | Aver.<br>Speed |
|              |         | [ Total     | HV ] | [ Total     | HV ] |              | Delay | Oervice             | [ Veh. | Dist ]        | Que            | Rate             | Cycles | opeeu          |
|              |         | veh/h       | %    | veh/h       | %    | v/c          | sec   |                     | veh    | m             |                |                  |        | km/h           |
| Sout         |         | kin (S)     |      |             |      |              |       |                     |        |               |                |                  |        |                |
| 1            | L2      | 6           | 5.0  | 6           | 5.0  | 0.008        | 5.8   | LOS A               | 0.0    | 0.3           | 0.50           | 0.52             | 0.50   | 46.0           |
| 2            | T1      | 135         | 5.0  | 142         | 5.0  | 0.137        | 4.7   | LOS A               | 0.8    | 5.9           | 0.49           | 0.54             | 0.49   | 46.8           |
| 3            | R2      | 24          | 5.0  | 25          | 5.0  | 0.137        | 8.6   | LOS A               | 0.8    | 5.9           | 0.49           | 0.54             | 0.49   | 46.7           |
| Appr         | oach    | 165         | 5.0  | 174         | 5.0  | 0.137        | 5.3   | LOS A               | 0.8    | 5.9           | 0.49           | 0.54             | 0.49   | 46.8           |
| East:        | Russe   | ell (E)     |      |             |      |              |       |                     |        |               |                |                  |        |                |
| 4            | L2      | 28          | 5.0  | 29          | 5.0  | 0.036        | 5.7   | LOS A               | 0.2    | 1.3           | 0.48           | 0.55             | 0.48   | 46.1           |
| 5            | T1      | 127         | 5.0  | 134         | 5.0  | 0.230        | 4.7   | LOS A               | 1.4    | 10.2          | 0.49           | 0.61             | 0.49   | 46.2           |
| 6            | R2      | 149         | 5.0  | 157         | 5.0  | 0.230        | 8.6   | LOS A               | 1.4    | 10.2          | 0.49           | 0.61             | 0.49   | 46.1           |
| Appr         | oach    | 304         | 5.0  | 320         | 5.0  | 0.230        | 6.7   | LOS A               | 1.4    | 10.2          | 0.49           | 0.60             | 0.49   | 46.1           |
| North        | n: Ranl | kin (N)     |      |             |      |              |       |                     |        |               |                |                  |        |                |
| 7            | L2      | 81          | 5.0  | 85          | 5.0  | 0.086        | 4.5   | LOS A               | 0.4    | 3.2           | 0.33           | 0.49             | 0.33   | 46.5           |
| 8            | T1      | 232         | 5.0  | 244         | 5.0  | 0.200        | 3.8   | LOS A               | 1.2    | 8.7           | 0.32           | 0.45             | 0.32   | 47.3           |
| 9            | R2      | 44          | 5.0  | 46          | 5.0  | 0.200        | 7.7   | LOS A               | 1.2    | 8.7           | 0.32           | 0.45             | 0.32   | 47.3           |
| Appr         | oach    | 357         | 5.0  | 376         | 5.0  | 0.200        | 4.5   | LOS A               | 1.2    | 8.7           | 0.32           | 0.46             | 0.32   | 47.1           |
| West         | : Russ  | ell (W)     |      |             |      |              |       |                     |        |               |                |                  |        |                |
| 10           | L2      | 26          | 5.0  | 27          | 5.0  | 0.033        | 5.8   | LOS A               | 0.2    | 1.2           | 0.48           | 0.55             | 0.48   | 46.0           |
| 11           | T1      | 85          | 5.0  | 89          | 5.0  | 0.083        | 4.6   | LOS A               | 0.5    | 3.3           | 0.45           | 0.51             | 0.45   | 47.0           |
| 12           | R2      | 14          | 5.0  | 15          | 5.0  | 0.083        | 8.5   | LOS A               | 0.5    | 3.3           | 0.45           | 0.51             | 0.45   | 46.9           |
| Appr         | oach    | 125         | 5.0  | 132         | 5.0  | 0.083        | 5.2   | LOS A               | 0.5    | 3.3           | 0.46           | 0.52             | 0.46   | 46.8           |
| All<br>Vehic | cles    | 951         | 5.0  | 1001        | 5.0  | 0.230        | 5.4   | LOS A               | 1.4    | 10.2          | 0.42           | 0.53             | 0.42   | 46.7           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:08 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

#### V Site: [Gallipoli Rankin\_PM\_Existing (Site Folder: General)]

Gallipoli Lane and Rankin Street, Bathurst PM Peak Period Existing Traffic Volumes Site Category: (None) Give-Way (Two-Way)

| Vehi         | cle M  | ovemen           | t Perfoi  | rmance           |           |              |     |                     |               |            |                |                   |              |                |
|--------------|--------|------------------|-----------|------------------|-----------|--------------|-----|---------------------|---------------|------------|----------------|-------------------|--------------|----------------|
| Mov<br>ID    | Turn   | INP<br>VOLU      |           | DEM/<br>FLO      |           | Deg.<br>Satn |     | Level of<br>Service | 95% BA<br>QUE |            | Prop. I<br>Que | Effective<br>Stop | Aver.<br>No. | Aver.<br>Speed |
|              |        | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | v/c          | sec |                     | [ Veh.<br>veh | Dist]<br>m |                | Rate              | Cycles       | km/h           |
| South        | n: Ran | kin (S)          |           |                  |           |              |     |                     |               |            |                |                   |              |                |
| 2            | T1     | 259              | 5.0       | 273              | 5.0       | 0.186        | 0.3 | LOS A               | 0.5           | 3.4        | 0.17           | 0.10              | 0.17         | 49.0           |
| 3            | R2     | 50               | 5.0       | 53               | 5.0       | 0.186        | 6.0 | LOS A               | 0.5           | 3.4        | 0.17           | 0.10              | 0.17         | 48.0           |
| Appro        | bach   | 309              | 5.0       | 325              | 5.0       | 0.186        | 1.3 | NA                  | 0.5           | 3.4        | 0.17           | 0.10              | 0.17         | 48.9           |
| East:        | Gallip | oli (E)          |           |                  |           |              |     |                     |               |            |                |                   |              |                |
| 4            | L2     | 65               | 5.0       | 68               | 5.0       | 0.126        | 5.6 | LOS A               | 0.5           | 3.4        | 0.41           | 0.65              | 0.41         | 45.4           |
| 6            | R2     | 45               | 5.0       | 47               | 5.0       | 0.126        | 8.0 | LOS A               | 0.5           | 3.4        | 0.41           | 0.65              | 0.41         | 45.0           |
| Appro        | bach   | 110              | 5.0       | 116              | 5.0       | 0.126        | 6.6 | LOS A               | 0.5           | 3.4        | 0.41           | 0.65              | 0.41         | 45.2           |
| North        | : Rank | kin (N)          |           |                  |           |              |     |                     |               |            |                |                   |              |                |
| 7            | L2     | 30               | 5.0       | 32               | 5.0       | 0.163        | 4.6 | LOS A               | 0.0           | 0.0        | 0.00           | 0.06              | 0.00         | 49.1           |
| 8            | T1     | 261              | 5.0       | 275              | 5.0       | 0.163        | 0.0 | LOS A               | 0.0           | 0.0        | 0.00           | 0.06              | 0.00         | 49.6           |
| Appro        | bach   | 291              | 5.0       | 306              | 5.0       | 0.163        | 0.5 | NA                  | 0.0           | 0.0        | 0.00           | 0.06              | 0.00         | 49.6           |
| All<br>Vehic | les    | 710              | 5.0       | 747              | 5.0       | 0.186        | 1.8 | NA                  | 0.5           | 3.4        | 0.14           | 0.16              | 0.14         | 48.5           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:21 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

#### V Site: [Howick Milne\_AM\_Existing (Site Folder: General)]

Howick Street and Milne Lane, Bathurst AM Peak Period Existing Traffic Volumes Site Category: (None) Give-Way (Two-Way)

| Vehi         | cle M   | ovemen           | t Perfo   | rmance           |           |              |     |                     |               |            |                |                   |              |                |
|--------------|---------|------------------|-----------|------------------|-----------|--------------|-----|---------------------|---------------|------------|----------------|-------------------|--------------|----------------|
| Mov<br>ID    | Turn    | INP<br>VOLU      |           | DEM/<br>FLO      |           | Deg.<br>Satn |     | Level of<br>Service | 95% BA<br>QUE |            | Prop.  <br>Que | Effective<br>Stop | Aver.<br>No. | Aver.<br>Speed |
|              |         | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | v/c          | sec |                     | [ Veh.<br>veh | Dist]<br>m |                | Rate              | Cycles       | km/h           |
| South        | n: Miln | e (S)            |           |                  |           |              |     |                     |               |            |                |                   |              |                |
| 1            | L2      | 6                | 5.0       | 6                | 5.0       | 0.022        | 5.2 | LOS A               | 0.1           | 0.5        | 0.35           | 0.59              | 0.35         | 45.5           |
| 3            | R2      | 12               | 5.0       | 13               | 5.0       | 0.022        | 7.0 | LOS A               | 0.1           | 0.5        | 0.35           | 0.59              | 0.35         | 45.1           |
| Appro        | bach    | 18               | 5.0       | 19               | 5.0       | 0.022        | 6.4 | LOS A               | 0.1           | 0.5        | 0.35           | 0.59              | 0.35         | 45.2           |
| East:        | Howie   | ck (E)           |           |                  |           |              |     |                     |               |            |                |                   |              |                |
| 4            | L2      | 50               | 5.0       | 53               | 5.0       | 0.124        | 4.6 | LOS A               | 0.0           | 0.0        | 0.00           | 0.12              | 0.00         | 48.7           |
| 5            | T1      | 169              | 5.0       | 178              | 5.0       | 0.124        | 0.0 | LOS A               | 0.0           | 0.0        | 0.00           | 0.12              | 0.00         | 49.2           |
| Appro        | bach    | 219              | 5.0       | 231              | 5.0       | 0.124        | 1.1 | NA                  | 0.0           | 0.0        | 0.00           | 0.12              | 0.00         | 49.1           |
| West         | : Howi  | ck (W)           |           |                  |           |              |     |                     |               |            |                |                   |              |                |
| 11           | T1      | 275              | 5.0       | 289              | 5.0       | 0.173        | 0.1 | LOS A               | 0.2           | 1.6        | 0.08           | 0.05              | 0.08         | 49.5           |
| 12           | R2      | 25               | 5.0       | 26               | 5.0       | 0.173        | 5.6 | LOS A               | 0.2           | 1.6        | 0.08           | 0.05              | 0.08         | 48.5           |
| Appro        | bach    | 300              | 5.0       | 316              | 5.0       | 0.173        | 0.6 | NA                  | 0.2           | 1.6        | 0.08           | 0.05              | 0.08         | 49.4           |
| All<br>Vehic | les     | 537              | 5.0       | 565              | 5.0       | 0.173        | 1.0 | NA                  | 0.2           | 1.6        | 0.05           | 0.10              | 0.05         | 49.2           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:18 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

#### V Site: [Gallipoli Rankin\_AM\_Existing (Site Folder: General)]

Gallipoli Lane and Rankin Street, Bathurst AM Peak Period Existing Traffic Volumes Site Category: (None) Give-Way (Two-Way)

| Vehi         | cle M  | ovemen           | t Perfo   | rmance           |           |              |     |                     |               |             |                |                  |              |                |
|--------------|--------|------------------|-----------|------------------|-----------|--------------|-----|---------------------|---------------|-------------|----------------|------------------|--------------|----------------|
| Mov<br>ID    | Turn   | INP<br>VOLU      |           | DEM/<br>FLO      |           | Deg.<br>Satn |     | Level of<br>Service | 95% BA<br>QUE |             | Prop. E<br>Que | ffective<br>Stop | Aver.<br>No. | Aver.<br>Speed |
|              |        | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | v/c          | sec |                     | [ Veh.<br>veh | Dist ]<br>m |                | Rate             | Cycles       | km/h           |
| South        | n: Ran | kin (S)          |           |                  |           |              |     |                     |               |             |                |                  |              |                |
| 2            | T1     | 187              | 5.0       | 197              | 5.0       | 0.176        | 1.0 | LOS A               | 0.7           | 5.3         | 0.33           | 0.19             | 0.33         | 48.2           |
| 3            | R2     | 75               | 5.0       | 79               | 5.0       | 0.176        | 6.6 | LOS A               | 0.7           | 5.3         | 0.33           | 0.19             | 0.33         | 47.2           |
| Appro        | bach   | 262              | 5.0       | 276              | 5.0       | 0.176        | 2.6 | NA                  | 0.7           | 5.3         | 0.33           | 0.19             | 0.33         | 47.9           |
| East:        | Gallip | oli (E)          |           |                  |           |              |     |                     |               |             |                |                  |              |                |
| 4            | L2     | 20               | 5.0       | 21               | 5.0       | 0.039        | 6.0 | LOS A               | 0.1           | 1.0         | 0.44           | 0.64             | 0.44         | 45.3           |
| 6            | R2     | 12               | 5.0       | 13               | 5.0       | 0.039        | 8.2 | LOS A               | 0.1           | 1.0         | 0.44           | 0.64             | 0.44         | 44.9           |
| Appro        | bach   | 32               | 5.0       | 34               | 5.0       | 0.039        | 6.8 | LOS A               | 0.1           | 1.0         | 0.44           | 0.64             | 0.44         | 45.1           |
| North        | : Rank | kin (N)          |           |                  |           |              |     |                     |               |             |                |                  |              |                |
| 7            | L2     | 50               | 5.0       | 53               | 5.0       | 0.226        | 4.7 | LOS A               | 0.0           | 0.0         | 0.00           | 0.07             | 0.00         | 49.0           |
| 8            | T1     | 353              | 5.0       | 372              | 5.0       | 0.226        | 0.1 | LOS A               | 0.0           | 0.0         | 0.00           | 0.07             | 0.00         | 49.5           |
| Appro        | bach   | 403              | 5.0       | 424              | 5.0       | 0.226        | 0.6 | NA                  | 0.0           | 0.0         | 0.00           | 0.07             | 0.00         | 49.4           |
| All<br>Vehic | les    | 697              | 5.0       | 734              | 5.0       | 0.226        | 1.7 | NA                  | 0.7           | 5.3         | 0.14           | 0.14             | 0.14         | 48.7           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:19 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

#### V Site: [Howick Milne\_PM\_Existing (Site Folder: General)]

Howick Street and Milne Lane, Bathurst PM Peak Period Existing Traffic Volumes Site Category: (None) Give-Way (Two-Way)

| Vehi         | cle M   | ovemen           | t Perfo   | rmance           |           |              |     |                     |               |             |                |      |              |                |
|--------------|---------|------------------|-----------|------------------|-----------|--------------|-----|---------------------|---------------|-------------|----------------|------|--------------|----------------|
| Mov<br>ID    | Turn    | INP<br>VOLU      | MES       | DEM/<br>FLO      | NS        | Deg.<br>Satn |     | Level of<br>Service | 95% BA<br>QUI | EUE         | Prop. E<br>Que | Stop | Aver.<br>No. | Aver.<br>Speed |
|              |         | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | v/c          | sec |                     | [ Veh.<br>veh | Dist ]<br>m |                | Rate | Cycles       | km/h           |
| South        | n: Miln | e (S)            |           |                  |           |              |     |                     |               |             |                |      |              |                |
| 1            | L2      | 20               | 5.0       | 21               | 5.0       | 0.082        | 5.3 | LOS A               | 0.3           | 2.0         | 0.39           | 0.65 | 0.39         | 45.3           |
| 3            | R2      | 45               | 5.0       | 47               | 5.0       | 0.082        | 7.4 | LOS A               | 0.3           | 2.0         | 0.39           | 0.65 | 0.39         | 44.9           |
| Appro        | bach    | 65               | 5.0       | 68               | 5.0       | 0.082        | 6.7 | LOS A               | 0.3           | 2.0         | 0.39           | 0.65 | 0.39         | 45.0           |
| East:        | Howig   | ck (E)           |           |                  |           |              |     |                     |               |             |                |      |              |                |
| 4            | L2      | 30               | 5.0       | 32               | 5.0       | 0.127        | 4.6 | LOS A               | 0.0           | 0.0         | 0.00           | 0.07 | 0.00         | 49.0           |
| 5            | T1      | 197              | 5.0       | 207              | 5.0       | 0.127        | 0.0 | LOS A               | 0.0           | 0.0         | 0.00           | 0.07 | 0.00         | 49.5           |
| Appro        | bach    | 227              | 5.0       | 239              | 5.0       | 0.127        | 0.6 | NA                  | 0.0           | 0.0         | 0.00           | 0.07 | 0.00         | 49.5           |
| West         | : Howi  | ck (W)           |           |                  |           |              |     |                     |               |             |                |      |              |                |
| 11           | T1      | 294              | 5.0       | 309              | 5.0       | 0.176        | 0.1 | LOS A               | 0.1           | 1.0         | 0.05           | 0.03 | 0.05         | 49.7           |
| 12           | R2      | 15               | 5.0       | 16               | 5.0       | 0.176        | 5.6 | LOS A               | 0.1           | 1.0         | 0.05           | 0.03 | 0.05         | 48.7           |
| Appro        | bach    | 309              | 5.0       | 325              | 5.0       | 0.176        | 0.3 | NA                  | 0.1           | 1.0         | 0.05           | 0.03 | 0.05         | 49.7           |
| All<br>Vehic | les     | 601              | 5.0       | 633              | 5.0       | 0.176        | 1.1 | NA                  | 0.3           | 2.0         | 0.07           | 0.11 | 0.07         | 49.0           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:20 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

### APPENDIX B – PARKING SURVEY DATA

|                                   | Location     |       | Parl     | king     |           |            |            |           |           |           |          | Avg      | Avg       | Peal                  |
|-----------------------------------|--------------|-------|----------|----------|-----------|------------|------------|-----------|-----------|-----------|----------|----------|-----------|-----------------------|
|                                   |              |       |          |          | 8:00      | 10:00      | 12:00      | 14:00     | 16:00     | 18:00     | 20:00    | (AII)    | (10-4)    |                       |
|                                   |              |       | Spaces   | No       | 33        | 33         | 33         | 33        | 33        | 33        | 33       | 33       | 33        | 33                    |
| Ē                                 |              | North | Occ      | No       | 7         | 21         | 13         | 15        | 17        | 10        | 1        | 12       | 17        | 21                    |
| eet<br>nkin                       | 2P           |       |          | %        | 21%       | 64%        | 39%        | 45%       | 52%       | 30%       | 3%       | 36%      | 52%       | 64%                   |
| < Str<br>Rai                      |              | South | Spaces   | No<br>No | 27<br>0   | 27<br>20   | 27<br>15   | 27<br>12  | 27<br>10  | 27        | 27<br>0  | 27<br>8  | 27<br>14  | 27<br>20              |
| Howick Street<br>(George-Rankin)  |              | 50000 | Occ      | %        | 0%        | 74%        | 56%        | 44%       | 37%       | 7%        | 0%       | 30%      | 52%       | 74%                   |
| Geo<br>Geo                        | e            |       | Spaces   | No       | 1         | 1          | 1          | 1         | 1         | 1         | 1        | 1        | 1         | 1                     |
| Ŭ                                 | Disable<br>d | North | Occ      | No       | 1         | 0          | 0          | 0         | 0         | 0         | 0        | 0        | 0         | 1                     |
|                                   |              |       |          | %        | 100%      | 0%         | 0%         | 0%        | 0%        | 0%        | 0%       | 0%       | 0%        | 1009                  |
|                                   |              | East  | Spaces   | No       | 12<br>9   | 12         | 12         | 12<br>10  | 12        | 12        | 12<br>11 | 12<br>10 | 12        | 12<br>11              |
|                                   | ber          | EdSL  | Occ      | No<br>%  | 75%       | 10<br>83%  | 11<br>92%  | 83%       | 8<br>67%  | 10<br>83% | 92%      | 83%      | 10<br>83% | 92%                   |
|                                   | Untimed      |       | Spaces   | No       | 18        | 18         | 18         | 18        | 18        | 18        | 18       | 18       | 18        | 18                    |
|                                   | 5            | West  | Occ      | No       | 10        | 15         | 15         | 12        | 12        | 10        | 13       | 12       | 14        | 15                    |
|                                   |              |       | 0        | %        | 56%       | 83%        | 83%        | 67%       | 67%       | 56%       | 72%      | 67%      | 78%       | 83%                   |
|                                   |              |       | Spaces   | No       | 8         | 8          | 8          | 8         | 8         | 8         | 8        | 8        | 8         | 8                     |
|                                   |              | East  | Occ      | No       | 0         | 4          | 8          | 2         | 3         | 5         | 7        | 4        | 4         | 8                     |
|                                   | 2P           |       | Spaces   | %<br>No  | 0%<br>5   | 50%<br>5   | 100%<br>5  | 25%<br>5  | 38%<br>5  | 63%<br>5  | 88%<br>5 | 50%<br>5 | 50%<br>5  | 100 <sup>4</sup><br>5 |
|                                   |              | West  |          | No       | 0         | 1          | 3          | 4         | 1         | 3         | 0        | 2        | 2         | 4                     |
|                                   |              |       | Occ      | %        | 0%        | 20%        | 60%        | 80%       | 20%       | 60%       | 0%       | 40%      | 40%       | 809                   |
|                                   | <u> </u>     |       | Spaces   | No       | 4         | 4          | 4          | 4         | 4         | 4         | 4        | 4        | 4         | 4                     |
| _                                 | 1/2P         | West  | Occ      | No       | 2         | 4          | 4          | 4         | 4         | 1         | 1        | 3        | 4         | 4                     |
| Rankin Street<br>(Howick-Russell) |              |       |          | %        | 50%       | 100%       | 100%       | 100%      | 100%      | 25%       | 25%      | 75%      | 100%      | 100                   |
| Rankin Street<br>Howick-Russel    | <u>e</u>     |       | Spaces   | No       | 5         | 5          | 5          | 5         | 5         | 5         | 5        | 5        | 5         | 5                     |
| kin<br>ick-                       | 1/4P         | East  | Occ      | No       | 4         | 3          | 1          | 1         | 2         | 5         | 4        | 3        | 2         | 5                     |
| Ran                               |              |       | - Cracoc | %        | 80%       | 60%<br>2   | 20%<br>2   | 20%<br>2  | 40%<br>2  | 100%      | 80%<br>2 | 60%<br>2 | 40%<br>2  | 100<br>2              |
| ΞΞ                                | 5-           | East  | Spaces   | No<br>No | 2         | 0          | 0          | 0         | 0         | 2         | 1        | 0        | 0         | 2                     |
|                                   | LU LU        | Last  | Occ      | %        | 0%        | 0%         | 0%         | 0%        | 0%        | 0%        | 0%       | 0%       | 0%        | 0%                    |
|                                   | U            |       | Spaces   | No       | 2         | 2          | 2          | 2         | 2         | 2         | 2        | 2        | 2         | 2                     |
|                                   | Disable<br>d | East  | Occ      | No       | 1         | 1          | 2          | 2         | 1         | 1         | 2        | 1        | 2         | 2                     |
|                                   | Di           |       | 000      | %        | 50%       | 50%        | 100%       | 100%      | 50%       | 50%       | 100%     | 50%      | 100%      | 100                   |
|                                   | ÷            |       | Spaces   | No       | 1         | 1          | 1          | 1         | 1         | 1         | 1        | 1        | 1         | 1                     |
|                                   | Taxi         | East  | Occ      | No       | 0         | 0          | 0          | 0         | 0         | 0         | 0        | 0        | 0         | 0                     |
|                                   |              |       | Spacor   | %<br>No  | 0%<br>1   | 0%<br>1    | 0%<br>1    | 0%<br>1   | 0%        | 0%<br>1   | 0%<br>1  | 0%<br>1  | 0%<br>1   | 0%                    |
|                                   | Bus          | East  | Spaces   | No       | 0         | 0          | 0          | 0         | 1         | 0         | 0        | 0        | 0         | 0                     |
|                                   | 8            |       | Occ      | %        | 0%        | 0%         | 0%         | 0%        | 0%        | 0%        | 0%       | 0%       | 0%        | 0%                    |
|                                   | U            |       | Spaces   | No       | 6         | 6          | 6          | 6         | 6         | 6         | 6        | 6        | 6         | 6                     |
|                                   | Police       | West  | Occ      | No       | 6         | 6          | 4          | 2         | 5         | 4         | 5        | 5        | 4         | 6                     |
|                                   |              |       | 000      | %        | 100%      | 100%       | 67%        | 33%       | 83%       | 67%       | 83%      | 83%      | 67%       | 100                   |
|                                   | Untime<br>d  |       | Spaces   | No       | 12        | 12         | 12         | 12        | 12        | 12        | 12       | 12       | 12        | 12                    |
|                                   | Jntir<br>d   | North | Occ      | No       | 4         | 12         | 12         | 11        | 8         | 2         | 1        | 7        | 11        | 12                    |
|                                   |              |       | - Cracoc | %<br>No  | 33%<br>28 | 100%<br>28 | 100%<br>28 | 92%<br>28 | 67%<br>28 | 17%<br>28 | 8%<br>28 | 58%      | 92%<br>28 | 100<br>28             |
|                                   |              | North | Spaces   | No       | 3         | 28         | 28         | 14        | 12        | 9         | 5        | 28<br>13 | 18        | 20                    |
| in) t                             | _            |       | Occ      | %        | 11%       | 86%        | 79%        | 50%       | 43%       | 32%       | 18%      | 46%      | 64%       | 869                   |
| Street<br>Rankin                  | 2P           |       | Spaces   | No       | 31        | 31         | 31         | 31        | 31        | 31        | 31       | 31       | 31        | 31                    |
| Russell Street<br>(George-Rankin) |              | South | Occ      | No       | 1         | 13         | 25         | 18        | 15        | 12        | 1        | 12       | 18        | 25                    |
| Russell :<br>George-I             |              |       | 000      | %        | 3%        | 42%        | 81%        | 58%       | 48%       | 39%       | 3%       | 39%      | 58%       | 819                   |
| а (9                              |              |       | Spaces   | No       | 1         | 1          | 1          | 1         | 1         | 1         | 1        | 1        | 1         | 1                     |
|                                   | ed           | North | Occ      | No       | 0         | 0          | 0          | 0         | 0         | 0         | 0        | 0        | 0         | 0                     |
|                                   | Disabled     |       | Spaces   | %<br>No  | 0%<br>1   | 0%<br>1    | 0%<br>1    | 0%<br>1   | 0%<br>1   | 0%<br>1   | 0%<br>1  | 0%<br>1  | 0%<br>1   | 0%                    |
|                                   | Dis          | South |          | No       | 0         | 0          | 1          | 1         | 1         | 0         | 0        | 0        | 1         | 1                     |
|                                   |              |       | Occ      | %        | 0%        | 0%         | 100%       | 100%      | 100%      | 0%        | 0%       | 0%       | 100%      | 100                   |
|                                   |              |       | Spaces   | No       | 38        | 38         | 38         | 38        | 38        | 38        | 38       | 38       | 38        | 38                    |
| _                                 |              | East  | Occ      | No       | 7         | 15         | 15         | 14        | 15        | 13        | 0        | 11       | 15        | 15                    |
| set<br>sell                       | 1P           |       |          | %        | 18%       | 39%        | 39%        | 37%       | 39%       | 34%       | 0%       | 29%      | 39%       | 39                    |
| Str.<br>Rus                       | -            |       | Spaces   | No       | 44        | 44         | 44         | 44        | 44        | 44        | 44       | 44       | 44        | 44                    |
| rge<br>ick-l                      |              | West  | Occ      | No       | 5         | 22         | 28         | 22        | 26        | 24        | 13       | 20       | 25        | 28                    |
| George Street<br>(Howick-Russell) | -            |       |          | %        | 11%       | 50%        | 64%        | 50%       | 59%       | 55%       | 30%      | 45%      | 57%       | 649                   |
| U ÷                               | <u> </u>     | 1     | Spaces   | No       | 1         | 1          | 1          | 1         | 1         | 1         | 1        | 1        | 1         | 1                     |
| Ξ.                                | Disable<br>d | West  |          | No       | 0         | 0          | 0          | 0         | 1         | 0         | 0        | 0        | 0         |                       |

Parking Study Bathurst, NSW

Wednesday 3 February 2021

#### Parking Study Bathurst, NSW Wednesday 3 February 2021

|                      | Location    |        | Par    | king |      |       |       |       |       |       |       | Avg   | Avg    | Peak |
|----------------------|-------------|--------|--------|------|------|-------|-------|-------|-------|-------|-------|-------|--------|------|
|                      |             |        |        |      | 8:00 | 10:00 | 12:00 | 14:00 | 16:00 | 18:00 | 20:00 | (All) | (10-4) |      |
|                      | ы           |        | Spaces | No   | 202  | 202   | 202   | 202   | 202   | 202   | 202   | 202   | 202    | 202  |
|                      | Untime<br>d |        | Occ    | No   | 35   | 198   | 200   | 181   | 157   | 103   | 98    | 139   | 184    | 200  |
|                      | 5           |        | 000    | %    | 17%  | 98%   | 99%   | 90%   | 78%   | 51%   | 49%   | 69%   | 91%    | 99%  |
|                      |             |        | Spaces | No   | 38   | 38    | 38    | 38    | 38    | 38    | 38    | 38    | 38     | 38   |
|                      |             | Тор    | Occ    | No   | 3    | 16    | 25    | 20    | 18    | 7     | 8     | 14    | 20     | 25   |
|                      |             |        |        | %    | 8%   | 42%   | 66%   | 53%   | 47%   | 18%   | 21%   | 37%   | 53%    | 66%  |
|                      |             |        | Spaces | No   | 46   | 46    | 46    | 46    | 46    | 46    | 46    | 46    | 46     | 46   |
| 논                    | 4P          | Bottom | Occ    | No   | 6    | 40    | 44    | 27    | 22    | 46    | 41    | 32    | 33     | 46   |
| Council/RSL Car Park |             |        |        | %    | 13%  | 87%   | 96%   | 59%   | 48%   | 100%  | 89%   | 70%   | 72%    | 100% |
| Cai                  |             |        | Spaces | No   | 20   | 20    | 20    | 20    | 20    | 20    | 20    | 20    | 20     | 20   |
| 3SL                  |             | North  | Occ    | No   | 0    | 4     | 14    | 11    | 11    | 4     | 4     | 7     | 10     | 14   |
| cil/                 |             |        |        | %    | 0%   | 20%   | 70%   | 55%   | 55%   | 20%   | 20%   | 35%   | 50%    | 70%  |
| ung                  |             |        | Spaces | No   | 8    | 8     | 8     | 8     | 8     | 8     | 8     | 8     | 8      | 8    |
| 8                    | 1/2P        |        | Occ    | No   | 1    | 3     | 3     | 0     | 0     | 2     | 0     | 1     | 2      | 3    |
|                      | -           |        |        | %    | 13%  | 38%   | 38%   | 0%    | 0%    | 25%   | 0%    | 13%   | 25%    | 38%  |
|                      |             |        | Spaces | No   | 4    | 4     | 4     | 4     | 4     | 4     | 4     | 4     | 4      | 4    |
|                      | 8           | RSL    | Occ    | No   | 0    | 3     | 4     | 3     | 1     | 3     | 4     | 3     | 3      | 4    |
|                      | Disabled    |        |        | %    | 0%   | 75%   | 100%  | 75%   | 25%   | 75%   | 100%  | 75%   | 75%    | 100% |
|                      | Disa        |        | Spaces | No   | 2    | 2     | 2     | 2     | 2     | 2     | 2     | 2     | 2      | 2    |
|                      |             | Toilet | Occ    | No   | 0    | 0     | 1     | 1     | 0     | 0     | 1     | 0     | 1      | 1    |
|                      |             |        |        | %    | 0%   | 0%    | 50%   | 50%   | 0%    | 0%    | 50%   | 0%    | 50%    | 50%  |
|                      |             |        | Spaces | No   | 42   | 42    | 42    | 42    | 42    | 42    | 42    | 42    | 42     | 42   |
| Site                 | 2P          |        | Occ    | No   | 7    | 25    | 28    | 22    | 18    | 4     | 1     | 15    | 23     | 28   |
|                      |             |        |        | %    | 17%  | 60%   | 67%   | 52%   | 43%   | 10%   | 2%    | 36%   | 55%    | 67%  |

### **APPENDIX C – PLANS OF PROPOSED DEVELOPMENT**







Intel32646344
Iot
<

VIC 3000

SYDNEY 7 YOUNG ST NEUTRAL BAY NS MELBOURNE LEVEL2 370 LITTLE BOURKE ST BRISBANE 2-220 BOUNDARY ST SPRING

LEVEL 1 1:200 @ A1

∞<









### **APPENDIX D – INTERSECTION ANALYSIS: WITH DEVELOPMENT**

# V Site: [Russell George\_PM\_With Development (Site Folder: General)]

Russell Street and George Street, Bathurst PM Peak Period With Proposed Development Site Category: (None) Roundabout

| Vehi         | cle M  | ovemen           | t Perfo   | rmance           |           |              |     |                     |               |             |              |                   |              |                |
|--------------|--------|------------------|-----------|------------------|-----------|--------------|-----|---------------------|---------------|-------------|--------------|-------------------|--------------|----------------|
| Mov<br>ID    | Turn   | INP<br>VOLU      |           | DEM/<br>FLO      |           | Deg.<br>Satn |     | Level of<br>Service | 95% BA<br>Que |             | Prop.<br>Que | Effective<br>Stop | Aver.<br>No. | Aver.<br>Speed |
|              |        | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | v/c          | sec |                     | [ Veh.<br>veh | Dist ]<br>m |              | Rate              | Cycles       | km/h           |
| South        | n: Geo | rge (S)          |           |                  |           |              |     |                     |               |             |              |                   |              |                |
| 1            | L2     | 35               | 5.0       | 37               | 5.0       | 0.050        | 6.4 | LOS A               | 0.3           | 1.9         | 0.56         | 0.60              | 0.56         | 45.7           |
| 2            | T1     | 278              | 5.0       | 293              | 5.0       | 0.276        | 5.2 | LOS A               | 1.8           | 13.4        | 0.60         | 0.60              | 0.60         | 46.6           |
| 3            | R2     | 25               | 5.0       | 26               | 5.0       | 0.276        | 9.1 | LOS A               | 1.8           | 13.4        | 0.60         | 0.60              | 0.60         | 46.5           |
| Appro        | oach   | 338              | 5.0       | 356              | 5.0       | 0.276        | 5.6 | LOS A               | 1.8           | 13.4        | 0.60         | 0.60              | 0.60         | 46.5           |
| East:        | Russe  | ell (E)          |           |                  |           |              |     |                     |               |             |              |                   |              |                |
| 4            | L2     | 56               | 5.0       | 59               | 5.0       | 0.077        | 6.2 | LOS A               | 0.4           | 2.9         | 0.54         | 0.61              | 0.54         | 45.8           |
| 5            | T1     | 198              | 5.0       | 208              | 5.0       | 0.289        | 5.1 | LOS A               | 1.9           | 13.9        | 0.57         | 0.63              | 0.57         | 46.2           |
| 6            | R2     | 129              | 5.0       | 136              | 5.0       | 0.289        | 9.0 | LOS A               | 1.9           | 13.9        | 0.57         | 0.63              | 0.57         | 46.1           |
| Appro        | oach   | 383              | 5.0       | 403              | 5.0       | 0.289        | 6.6 | LOS A               | 1.9           | 13.9        | 0.57         | 0.62              | 0.57         | 46.1           |
| North        | n: Geo | rge (N)          |           |                  |           |              |     |                     |               |             |              |                   |              |                |
| 7            | L2     | 67               | 5.0       | 71               | 5.0       | 0.083        | 5.3 | LOS A               | 0.4           | 3.1         | 0.45         | 0.55              | 0.45         | 46.2           |
| 8            | T1     | 276              | 5.0       | 291              | 5.0       | 0.264        | 4.4 | LOS A               | 1.7           | 12.6        | 0.46         | 0.52              | 0.46         | 46.9           |
| 9            | R2     | 54               | 5.0       | 57               | 5.0       | 0.264        | 8.2 | LOS A               | 1.7           | 12.6        | 0.46         | 0.52              | 0.46         | 46.8           |
| Appro        | oach   | 397              | 5.0       | 418              | 5.0       | 0.264        | 5.0 | LOS A               | 1.7           | 12.6        | 0.46         | 0.52              | 0.46         | 46.8           |
| West         | : Russ | ell (W)          |           |                  |           |              |     |                     |               |             |              |                   |              |                |
| 10           | L2     | 77               | 5.0       | 81               | 5.0       | 0.099        | 6.4 | LOS A               | 0.5           | 3.9         | 0.59         | 0.64              | 0.59         | 45.7           |
| 11           | T1     | 177              | 5.0       | 186              | 5.0       | 0.182        | 5.4 | LOS A               | 1.1           | 8.3         | 0.59         | 0.60              | 0.59         | 46.6           |
| 12           | R2     | 17               | 5.0       | 18               | 5.0       | 0.182        | 9.3 | LOS A               | 1.1           | 8.3         | 0.59         | 0.60              | 0.59         | 46.5           |
| Appro        | oach   | 271              | 5.0       | 285              | 5.0       | 0.182        | 5.9 | LOS A               | 1.1           | 8.3         | 0.59         | 0.61              | 0.59         | 46.3           |
| All<br>Vehic | cles   | 1389             | 5.0       | 1462             | 5.0       | 0.289        | 5.8 | LOS A               | 1.9           | 13.9        | 0.55         | 0.59              | 0.55         | 46.4           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:14 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

# V Site: [Howick Rankin\_AM\_With Development (Site Folder: General)]

Howick Street and Rankin Street, Bathurst AM Peak Period With Proposed Development Site Category: (None) Roundabout

| Vehi         | cle M   | ovemen          | t Perfo      | rmance         |           |       |       |          |              |               |      |              |               |       |
|--------------|---------|-----------------|--------------|----------------|-----------|-------|-------|----------|--------------|---------------|------|--------------|---------------|-------|
|              | Turn    | INP             |              | DEM            |           | Deg.  |       | Level of |              | CK OF         |      | Effective    | Aver.         | Aver. |
| ID           |         | VOLU<br>[ Total | IMES<br>HV 1 | FLO<br>[ Total | WS<br>HV] | Satn  | Delay | Service  | QUE<br>[Veh. | =UE<br>Dist ] | Que  | Stop<br>Rate | No.<br>Cycles | Speed |
|              |         | veh/h           | пvј<br>%     | veh/h          | пvј<br>%  | v/c   | sec   |          | veh          | m m           |      | Nale         | Cycles        | km/h  |
| Sout         | h: Ran  | kin (S)         |              |                |           |       |       |          |              |               |      |              |               |       |
| 1            | L2      | 9               | 5.0          | 9              | 5.0       | 0.010 | 4.3   | LOS A    | 0.0          | 0.3           | 0.28 | 0.44         | 0.28          | 46.6  |
| 2            | T1      | 172             | 5.0          | 181            | 5.0       | 0.178 | 3.7   | LOS A    | 1.1          | 7.9           | 0.28 | 0.47         | 0.28          | 47.2  |
| 3            | R2      | 80              | 5.0          | 84             | 5.0       | 0.178 | 7.6   | LOS A    | 1.1          | 7.9           | 0.28 | 0.47         | 0.28          | 47.1  |
| Appr         | oach    | 261             | 5.0          | 275            | 5.0       | 0.178 | 4.9   | LOS A    | 1.1          | 7.9           | 0.28 | 0.47         | 0.28          | 47.1  |
| East         | Howig   | ck (E)          |              |                |           |       |       |          |              |               |      |              |               |       |
| 4            | L2      | 67              | 5.0          | 71             | 5.0       | 0.080 | 6.3   | LOS A    | 0.5          | 3.3           | 0.61 | 0.63         | 0.61          | 45.7  |
| 5            | T1      | 46              | 5.0          | 48             | 5.0       | 0.077 | 5.5   | LOS A    | 0.5          | 3.4           | 0.60 | 0.62         | 0.60          | 46.1  |
| 6            | R2      | 32              | 5.0          | 34             | 5.0       | 0.077 | 9.3   | LOS A    | 0.5          | 3.4           | 0.60 | 0.62         | 0.60          | 46.0  |
| Appr         | oach    | 145             | 5.0          | 153            | 5.0       | 0.080 | 6.7   | LOS A    | 0.5          | 3.4           | 0.60 | 0.63         | 0.60          | 45.9  |
| North        | n: Ranl | kin (N)         |              |                |           |       |       |          |              |               |      |              |               |       |
| 7            | L2      | 106             | 5.0          | 112            | 5.0       | 0.129 | 5.4   | LOS A    | 0.7          | 4.8           | 0.44 | 0.56         | 0.44          | 46.2  |
| 8            | T1      | 446             | 5.0          | 469            | 5.0       | 0.360 | 4.5   | LOS A    | 2.4          | 17.6          | 0.47 | 0.50         | 0.47          | 47.1  |
| 9            | R2      | 15              | 5.0          | 16             | 5.0       | 0.360 | 8.4   | LOS A    | 2.4          | 17.6          | 0.47 | 0.50         | 0.47          | 47.0  |
| Appr         | oach    | 567             | 5.0          | 597            | 5.0       | 0.360 | 4.7   | LOS A    | 2.4          | 17.6          | 0.47 | 0.51         | 0.47          | 46.9  |
| West         | : Howi  | ck (W)          |              |                |           |       |       |          |              |               |      |              |               |       |
| 10           | L2      | 19              | 5.0          | 20             | 5.0       | 0.024 | 5.6   | LOS A    | 0.1          | 0.8           | 0.46 | 0.54         | 0.46          | 46.1  |
| 11           | T1      | 114             | 5.0          | 120            | 5.0       | 0.114 | 4.5   | LOS A    | 0.6          | 4.5           | 0.44 | 0.52         | 0.44          | 46.9  |
| 12           | R2      | 23              | 5.0          | 24             | 5.0       | 0.114 | 8.4   | LOS A    | 0.6          | 4.5           | 0.44 | 0.52         | 0.44          | 46.9  |
| Appr         | oach    | 156             | 5.0          | 164            | 5.0       | 0.114 | 5.2   | LOS A    | 0.6          | 4.5           | 0.44 | 0.52         | 0.44          | 46.8  |
| All<br>Vehic | cles    | 1129            | 5.0          | 1188           | 5.0       | 0.360 | 5.1   | LOS A    | 2.4          | 17.6          | 0.44 | 0.52         | 0.44          | 46.8  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:09 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

## V Site: [Howick George\_AM\_With Development (Site Folder: General)]

Howick Street and George Street, Bathurst AM Peak Period With Proposed Development Site Category: (None) Roundabout

| Vehi         | cle M  | ovemen           | t Perfo   | rmance           |           |              |      |                     |               |             |                |                   |        |                |
|--------------|--------|------------------|-----------|------------------|-----------|--------------|------|---------------------|---------------|-------------|----------------|-------------------|--------|----------------|
| Mov<br>ID    | Turn   | INP<br>VOLU      | IMES      | DEM/<br>FLO      | WS        | Deg.<br>Satn |      | Level of<br>Service | 95% BA<br>QUE | EUE         | Prop.  <br>Que | Effective<br>Stop |        | Aver.<br>Speed |
|              |        | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | v/c          | sec  |                     | [ Veh.<br>veh | Dist ]<br>m |                | Rate              | Cycles | km/h           |
| South        | n: Geo | rge (S)          |           |                  |           |              |      |                     |               |             |                |                   |        |                |
| 1            | L2     | 45               | 5.0       | 47               | 5.0       | 0.314        | 5.7  | LOS A               | 2.0           | 14.6        | 0.62           | 0.68              | 0.62   | 45.2           |
| 2            | T1     | 157              | 5.0       | 165              | 5.0       | 0.314        | 5.8  | LOS A               | 2.0           | 14.6        | 0.62           | 0.68              | 0.62   | 46.2           |
| 3            | R2     | 81               | 5.0       | 85               | 5.0       | 0.314        | 9.7  | LOS A               | 2.0           | 14.6        | 0.62           | 0.68              | 0.62   | 46.1           |
| Appro        | oach   | 283              | 5.0       | 298              | 5.0       | 0.314        | 6.9  | LOS A               | 2.0           | 14.6        | 0.62           | 0.68              | 0.62   | 46.0           |
| East:        | Howig  | ck (E)           |           |                  |           |              |      |                     |               |             |                |                   |        |                |
| 4            | L2     | 78               | 5.0       | 82               | 5.0       | 0.341        | 8.4  | LOS A               | 2.4           | 17.5        | 0.84           | 0.86              | 0.84   | 44.2           |
| 5            | T1     | 78               | 5.0       | 82               | 5.0       | 0.341        | 8.4  | LOS A               | 2.4           | 17.5        | 0.84           | 0.86              | 0.84   | 45.1           |
| 6            | R2     | 58               | 5.0       | 61               | 5.0       | 0.341        | 12.3 | LOS A               | 2.4           | 17.5        | 0.84           | 0.86              | 0.84   | 45.0           |
| Appro        | oach   | 214              | 5.0       | 225              | 5.0       | 0.341        | 9.5  | LOS A               | 2.4           | 17.5        | 0.84           | 0.86              | 0.84   | 44.7           |
| North        | n: Geo | rge (N)          |           |                  |           |              |      |                     |               |             |                |                   |        |                |
| 7            | L2     | 43               | 5.0       | 45               | 5.0       | 0.644        | 6.6  | LOS A               | 6.5           | 47.2        | 0.74           | 0.73              | 0.80   | 44.7           |
| 8            | T1     | 393              | 5.0       | 414              | 5.0       | 0.644        | 6.6  | LOS A               | 6.5           | 47.2        | 0.74           | 0.73              | 0.80   | 45.7           |
| 9            | R2     | 229              | 5.0       | 241              | 5.0       | 0.644        | 10.5 | LOS A               | 6.5           | 47.2        | 0.74           | 0.73              | 0.80   | 45.6           |
| Appro        | oach   | 665              | 5.0       | 700              | 5.0       | 0.644        | 8.0  | LOS A               | 6.5           | 47.2        | 0.74           | 0.73              | 0.80   | 45.6           |
| West         | : Howi | ck (W)           |           |                  |           |              |      |                     |               |             |                |                   |        |                |
| 10           | L2     | 99               | 5.0       | 104              | 5.0       | 0.297        | 5.2  | LOS A               | 1.9           | 13.7        | 0.57           | 0.62              | 0.57   | 45.7           |
| 11           | T1     | 135              | 5.0       | 142              | 5.0       | 0.297        | 5.3  | LOS A               | 1.9           | 13.7        | 0.57           | 0.62              | 0.57   | 46.7           |
| 12           | R2     | 50               | 5.0       | 53               | 5.0       | 0.297        | 9.2  | LOS A               | 1.9           | 13.7        | 0.57           | 0.62              | 0.57   | 46.6           |
| Appro        | oach   | 284              | 5.0       | 299              | 5.0       | 0.297        | 5.9  | LOS A               | 1.9           | 13.7        | 0.57           | 0.62              | 0.57   | 46.3           |
| All<br>Vehic | cles   | 1446             | 5.0       | 1522             | 5.0       | 0.644        | 7.6  | LOS A               | 6.5           | 47.2        | 0.70           | 0.72              | 0.72   | 45.7           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:10 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

## V Site: [Russell Rankin\_AM\_With Development (Site Folder: General)]

Russell Street and Rankin Street, Bathurst AM Peak Period With Proposed Development Site Category: (None) Roundabout

| Vehi         | cle M   | ovemen           | t Perfo   | rmance           |           |              |     |                     |               |               |                |                   |        |                |
|--------------|---------|------------------|-----------|------------------|-----------|--------------|-----|---------------------|---------------|---------------|----------------|-------------------|--------|----------------|
| Mov<br>ID    | Turn    | INP<br>VOLU      |           | DEM/<br>FLO      |           | Deg.<br>Satn |     | Level of<br>Service |               | ACK OF<br>EUE | Prop. I<br>Que | Effective<br>Stop | Aver.  | Aver.<br>Speed |
|              |         | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | V/C          | sec | Service             | [ Veh.<br>veh | Dist ]<br>m   | Que            | Rate              | Cycles | km/h           |
| Sout         | h: Ran  | kin (S)          | /0        | VGH/TI           | 70        | v/c          | 360 | _                   | Ven           |               | _              | _                 | _      | K11/11         |
| 1            | L2      | 9                | 5.0       | 9                | 5.0       | 0.012        | 5.5 | LOS A               | 0.1           | 0.4           | 0.47           | 0.51              | 0.47   | 46.1           |
| 2            | T1      | 247              | 5.0       | 260              | 5.0       | 0.228        | 4.6 | LOS A               | 1.4           | 10.2          | 0.49           | 0.53              | 0.49   | 46.9           |
| 3            | R2      | 26               | 5.0       | 27               | 5.0       | 0.228        | 8.5 | LOS A               | 1.4           | 10.2          | 0.49           | 0.53              | 0.49   | 46.8           |
| Appr         | oach    | 282              | 5.0       | 297              | 5.0       | 0.228        | 5.0 | LOS A               | 1.4           | 10.2          | 0.49           | 0.53              | 0.49   | 46.9           |
| East         | Russe   | ell (E)          |           |                  |           |              |     |                     |               |               |                |                   |        |                |
| 4            | L2      | 24               | 5.0       | 25               | 5.0       | 0.031        | 5.7 | LOS A               | 0.2           | 1.1           | 0.48           | 0.55              | 0.48   | 46.1           |
| 5            | T1      | 92               | 5.0       | 97               | 5.0       | 0.183        | 4.6 | LOS A               | 1.1           | 7.9           | 0.48           | 0.60              | 0.48   | 46.1           |
| 6            | R2      | 126              | 5.0       | 133              | 5.0       | 0.183        | 8.5 | LOS A               | 1.1           | 7.9           | 0.48           | 0.60              | 0.48   | 46.1           |
| Appr         | oach    | 242              | 5.0       | 255              | 5.0       | 0.183        | 6.7 | LOS A               | 1.1           | 7.9           | 0.48           | 0.60              | 0.48   | 46.1           |
| North        | n: Ranl | kin (N)          |           |                  |           |              |     |                     |               |               |                |                   |        |                |
| 7            | L2      | 135              | 5.0       | 142              | 5.0       | 0.133        | 4.8 | LOS A               | 0.7           | 5.3           | 0.41           | 0.53              | 0.41   | 46.3           |
| 8            | T1      | 206              | 5.0       | 217              | 5.0       | 0.209        | 4.2 | LOS A               | 1.3           | 9.4           | 0.41           | 0.51              | 0.41   | 46.9           |
| 9            | R2      | 61               | 5.0       | 64               | 5.0       | 0.209        | 8.1 | LOS A               | 1.3           | 9.4           | 0.41           | 0.51              | 0.41   | 46.9           |
| Appr         | oach    | 402              | 5.0       | 423              | 5.0       | 0.209        | 5.0 | LOS A               | 1.3           | 9.4           | 0.41           | 0.51              | 0.41   | 46.7           |
| West         | : Russ  | ell (W)          |           |                  |           |              |     |                     |               |               |                |                   |        |                |
| 10           | L2      | 66               | 5.0       | 69               | 5.0       | 0.082        | 6.1 | LOS A               | 0.4           | 3.1           | 0.55           | 0.61              | 0.55   | 45.8           |
| 11           | T1      | 147              | 5.0       | 155              | 5.0       | 0.152        | 5.1 | LOS A               | 0.9           | 6.6           | 0.55           | 0.58              | 0.55   | 46.7           |
| 12           | R2      | 20               | 5.0       | 21               | 5.0       | 0.152        | 9.0 | LOS A               | 0.9           | 6.6           | 0.55           | 0.58              | 0.55   | 46.6           |
| Appr         | oach    | 233              | 5.0       | 245              | 5.0       | 0.152        | 5.7 | LOS A               | 0.9           | 6.6           | 0.55           | 0.59              | 0.55   | 46.4           |
| All<br>Vehio | cles    | 1159             | 5.0       | 1220             | 5.0       | 0.228        | 5.5 | LOS A               | 1.4           | 10.2          | 0.47           | 0.55              | 0.47   | 46.6           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:11 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

# V Site: [Russell George\_AM\_With Development (Site Folder: General)]

Russell Street and George Street, Bathurst AM Peak Period With Proposed Development Site Category: (None) Roundabout

| Vehi         | cle M   | ovemen          | t Perfo      | rmance         |            |       |       |          |              |               |      |              |               |       |
|--------------|---------|-----------------|--------------|----------------|------------|-------|-------|----------|--------------|---------------|------|--------------|---------------|-------|
|              | Turn    | INP             |              | DEM            |            | Deg.  |       | Level of |              | ACK OF        |      | Effective    | Aver.         | Aver. |
| ID           |         | VOLU<br>[ Total | IMES<br>HV 1 | FLO<br>[ Total | WS<br>HV 1 | Satn  | Delay | Service  | QUI<br>[Veh. | EUE<br>Dist ] | Que  | Stop<br>Rate | No.<br>Cycles | Speed |
|              |         | veh/h           | %            | veh/h          | %          | v/c   | sec   |          | veh          | m             |      | Trate        | Cycles        | km/h  |
| Sout         | n: Geo  | rge (S)         |              |                |            |       |       |          |              |               |      |              |               |       |
| 1            | L2      | 26              | 5.0          | 27             | 5.0        | 0.035 | 5.9   | LOS A    | 0.2          | 1.3           | 0.52 | 0.57         | 0.52          | 45.9  |
| 2            | T1      | 215             | 5.0          | 226            | 5.0        | 0.210 | 4.8   | LOS A    | 1.3          | 9.7           | 0.54 | 0.56         | 0.54          | 46.7  |
| 3            | R2      | 25              | 5.0          | 26             | 5.0        | 0.210 | 8.7   | LOS A    | 1.3          | 9.7           | 0.54 | 0.56         | 0.54          | 46.7  |
| Appr         | oach    | 266             | 5.0          | 280            | 5.0        | 0.210 | 5.3   | LOS A    | 1.3          | 9.7           | 0.54 | 0.56         | 0.54          | 46.6  |
| East:        | Russe   | ell (E)         |              |                |            |       |       |          |              |               |      |              |               |       |
| 4            | L2      | 51              | 5.0          | 54             | 5.0        | 0.075 | 6.7   | LOS A    | 0.4          | 2.9           | 0.59 | 0.64         | 0.59          | 45.5  |
| 5            | T1      | 195             | 5.0          | 205            | 5.0        | 0.258 | 5.4   | LOS A    | 1.7          | 12.5          | 0.62 | 0.65         | 0.62          | 46.2  |
| 6            | R2      | 80              | 5.0          | 84             | 5.0        | 0.258 | 9.3   | LOS A    | 1.7          | 12.5          | 0.62 | 0.65         | 0.62          | 46.1  |
| Appr         | oach    | 326             | 5.0          | 343            | 5.0        | 0.258 | 6.6   | LOS A    | 1.7          | 12.5          | 0.62 | 0.64         | 0.62          | 46.1  |
| North        | n: Geoi | rge (N)         |              |                |            |       |       |          |              |               |      |              |               |       |
| 7            | L2      | 88              | 5.0          | 93             | 5.0        | 0.115 | 5.8   | LOS A    | 0.6          | 4.4           | 0.51 | 0.59         | 0.51          | 46.0  |
| 8            | T1      | 331             | 5.0          | 348            | 5.0        | 0.322 | 4.8   | LOS A    | 2.2          | 15.9          | 0.54 | 0.56         | 0.54          | 46.7  |
| 9            | R2      | 52              | 5.0          | 55             | 5.0        | 0.322 | 8.7   | LOS A    | 2.2          | 15.9          | 0.54 | 0.56         | 0.54          | 46.6  |
| Appr         | oach    | 471             | 5.0          | 496            | 5.0        | 0.322 | 5.4   | LOS A    | 2.2          | 15.9          | 0.53 | 0.56         | 0.53          | 46.6  |
| West         | : Russ  | ell (W)         |              |                |            |       |       |          |              |               |      |              |               |       |
| 10           | L2      | 79              | 5.0          | 83             | 5.0        | 0.099 | 5.8   | LOS A    | 0.5          | 3.8           | 0.52 | 0.60         | 0.52          | 46.0  |
| 11           | T1      | 220             | 5.0          | 232            | 5.0        | 0.222 | 4.8   | LOS A    | 1.4          | 10.0          | 0.52 | 0.56         | 0.52          | 46.7  |
| 12           | R2      | 37              | 5.0          | 39             | 5.0        | 0.222 | 8.7   | LOS A    | 1.4          | 10.0          | 0.52 | 0.56         | 0.52          | 46.6  |
| Appr         | oach    | 336             | 5.0          | 354            | 5.0        | 0.222 | 5.5   | LOS A    | 1.4          | 10.0          | 0.52 | 0.57         | 0.52          | 46.5  |
| All<br>Vehic | les     | 1399            | 5.0          | 1473           | 5.0        | 0.322 | 5.7   | LOS A    | 2.2          | 15.9          | 0.55 | 0.58         | 0.55          | 46.4  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:12 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

# V Site: [Howick Rankin\_PM\_With Development (Site Folder: General)]

Howick Street and Rankin Street, Bathurst PM Peak Period With Proposed Development Site Category: (None) Roundabout

| Vehi         | cle M   | ovemen          | t Perfo | rmance         |            |       |       |          |              |               |      |              |               |       |
|--------------|---------|-----------------|---------|----------------|------------|-------|-------|----------|--------------|---------------|------|--------------|---------------|-------|
|              | Turn    | INP             |         | DEM            |            | Deg.  |       | Level of |              |               |      | Effective    | Aver.         | Aver. |
| ID           |         | VOLU<br>[ Total | HV 1    | FLO<br>[ Total | WS<br>HV 1 | Satn  | Delay | Service  | QUI<br>[Veh. | EUE<br>Dist ] | Que  | Stop<br>Rate | No.<br>Cycles | Speed |
|              |         | veh/h           | %       | veh/h          | %          | v/c   | sec   |          | veh          | m             |      | rtato        | e yelee       | km/h  |
| Sout         | h: Ran  | kin (S)         |         |                |            |       |       |          |              |               |      |              |               |       |
| 1            | L2      | 17              | 5.0     | 18             | 5.0        | 0.021 | 5.2   | LOS A    | 0.1          | 0.7           | 0.42 | 0.51         | 0.42          | 46.2  |
| 2            | T1      | 359             | 5.0     | 378            | 5.0        | 0.361 | 4.5   | LOS A    | 2.5          | 18.2          | 0.49 | 0.54         | 0.49          | 46.7  |
| 3            | R2      | 99              | 5.0     | 104            | 5.0        | 0.361 | 8.4   | LOS A    | 2.5          | 18.2          | 0.49 | 0.54         | 0.49          | 46.7  |
| Appr         | oach    | 475             | 5.0     | 500            | 5.0        | 0.361 | 5.3   | LOS A    | 2.5          | 18.2          | 0.49 | 0.54         | 0.49          | 46.7  |
| East:        | Howid   | ck (E)          |         |                |            |       |       |          |              |               |      |              |               |       |
| 4            | L2      | 57              | 5.0     | 60             | 5.0        | 0.072 | 5.9   | LOS A    | 0.4          | 2.7           | 0.53 | 0.59         | 0.53          | 45.9  |
| 5            | T1      | 72              | 5.0     | 76             | 5.0        | 0.150 | 4.9   | LOS A    | 0.9          | 6.5           | 0.52 | 0.62         | 0.52          | 46.1  |
| 6            | R2      | 97              | 5.0     | 102            | 5.0        | 0.150 | 8.8   | LOS A    | 0.9          | 6.5           | 0.52 | 0.62         | 0.52          | 46.0  |
| Appr         | oach    | 226             | 5.0     | 238            | 5.0        | 0.150 | 6.8   | LOS A    | 0.9          | 6.5           | 0.52 | 0.61         | 0.52          | 46.0  |
| North        | n: Ranl | kin (N)         |         |                |            |       |       |          |              |               |      |              |               |       |
| 7            | L2      | 113             | 5.0     | 119            | 5.0        | 0.125 | 5.1   | LOS A    | 0.7          | 4.8           | 0.43 | 0.55         | 0.43          | 46.2  |
| 8            | T1      | 283             | 5.0     | 298            | 5.0        | 0.263 | 4.3   | LOS A    | 1.6          | 12.0          | 0.44 | 0.51         | 0.44          | 47.0  |
| 9            | R2      | 50              | 5.0     | 53             | 5.0        | 0.263 | 8.2   | LOS A    | 1.6          | 12.0          | 0.44 | 0.51         | 0.44          | 46.9  |
| Appr         | oach    | 446             | 5.0     | 469            | 5.0        | 0.263 | 5.0   | LOS A    | 1.6          | 12.0          | 0.44 | 0.52         | 0.44          | 46.8  |
| West         | : Howi  | ck (W)          |         |                |            |       |       |          |              |               |      |              |               |       |
| 10           | L2      | 29              | 5.0     | 31             | 5.0        | 0.047 | 7.7   | LOS A    | 0.2          | 1.8           | 0.65 | 0.66         | 0.65          | 44.9  |
| 11           | T1      | 97              | 5.0     | 102            | 5.0        | 0.121 | 6.0   | LOS A    | 0.8          | 5.5           | 0.65 | 0.64         | 0.65          | 46.2  |
| 12           | R2      | 19              | 5.0     | 20             | 5.0        | 0.121 | 9.9   | LOS A    | 0.8          | 5.5           | 0.65 | 0.64         | 0.65          | 46.2  |
| Appr         | oach    | 145             | 5.0     | 153            | 5.0        | 0.121 | 6.9   | LOS A    | 0.8          | 5.5           | 0.65 | 0.65         | 0.65          | 46.0  |
| All<br>Vehic | cles    | 1292            | 5.0     | 1360           | 5.0        | 0.361 | 5.6   | LOS A    | 2.5          | 18.2          | 0.49 | 0.56         | 0.49          | 46.5  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:12 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

# V Site: [Howick George\_PM\_With Development (Site Folder: General)]

Howick Street and George Street, Bathurst PM Peak Period With Proposed Development Site Category: (None) Roundabout

| Vehi         | cle M   | ovemen          | t Perfo      | rmance         |            |       |       |          |              |               |      |              |               |       |
|--------------|---------|-----------------|--------------|----------------|------------|-------|-------|----------|--------------|---------------|------|--------------|---------------|-------|
|              | Turn    | INP             |              | DEM            |            | Deg.  |       | Level of |              | ACK OF        |      | Effective    | Aver.         | Aver. |
| ID           |         | VOLU<br>[ Total | IMES<br>HV 1 | FLO<br>[ Total | WS<br>HV 1 | Satn  | Delay | Service  | QUI<br>[Veh. | EUE<br>Dist ] | Que  | Stop<br>Rate | No.<br>Cycles | Speed |
|              |         | veh/h           | %            | veh/h          | %          | v/c   | sec   |          | veh          | m             |      | Tato         | Cycles        | km/h  |
| Sout         | h: Geo  | rge (S)         |              |                |            |       |       |          |              |               |      |              |               |       |
| 1            | L2      | 44              | 5.0          | 46             | 5.0        | 0.495 | 6.3   | LOS A    | 3.7          | 26.9          | 0.70 | 0.72         | 0.71          | 45.1  |
| 2            | T1      | 319             | 5.0          | 336            | 5.0        | 0.495 | 6.3   | LOS A    | 3.7          | 26.9          | 0.70 | 0.72         | 0.71          | 46.0  |
| 3            | R2      | 90              | 5.0          | 95             | 5.0        | 0.495 | 10.2  | LOS A    | 3.7          | 26.9          | 0.70 | 0.72         | 0.71          | 46.0  |
| Appr         | oach    | 453             | 5.0          | 477            | 5.0        | 0.495 | 7.1   | LOS A    | 3.7          | 26.9          | 0.70 | 0.72         | 0.71          | 45.9  |
| East:        | Howid   | ck (E)          |              |                |            |       |       |          |              |               |      |              |               |       |
| 4            | L2      | 110             | 5.0          | 116            | 5.0        | 0.382 | 6.3   | LOS A    | 2.6          | 19.2          | 0.71 | 0.75         | 0.71          | 44.9  |
| 5            | T1      | 101             | 5.0          | 106            | 5.0        | 0.382 | 6.4   | LOS A    | 2.6          | 19.2          | 0.71 | 0.75         | 0.71          | 45.9  |
| 6            | R2      | 110             | 5.0          | 116            | 5.0        | 0.382 | 10.3  | LOS A    | 2.6          | 19.2          | 0.71 | 0.75         | 0.71          | 45.8  |
| Appr         | oach    | 321             | 5.0          | 338            | 5.0        | 0.382 | 7.7   | LOS A    | 2.6          | 19.2          | 0.71 | 0.75         | 0.71          | 45.5  |
| North        | n: Geol | rge (N)         |              |                |            |       |       |          |              |               |      |              |               |       |
| 7            | L2      | 55              | 5.0          | 58             | 5.0        | 0.461 | 5.6   | LOS A    | 3.4          | 25.1          | 0.66 | 0.67         | 0.66          | 45.1  |
| 8            | T1      | 240             | 5.0          | 253            | 5.0        | 0.461 | 5.6   | LOS A    | 3.4          | 25.1          | 0.66 | 0.67         | 0.66          | 46.1  |
| 9            | R2      | 148             | 5.0          | 156            | 5.0        | 0.461 | 9.5   | LOS A    | 3.4          | 25.1          | 0.66 | 0.67         | 0.66          | 46.0  |
| Appr         | oach    | 443             | 5.0          | 466            | 5.0        | 0.461 | 6.9   | LOS A    | 3.4          | 25.1          | 0.66 | 0.67         | 0.66          | 45.9  |
| West         | : Howi  | ck (W)          |              |                |            |       |       |          |              |               |      |              |               |       |
| 10           | L2      | 273             | 5.0          | 287            | 5.0        | 0.622 | 10.3  | LOS A    | 6.3          | 46.1          | 0.89 | 0.98         | 1.10          | 43.5  |
| 11           | T1      | 169             | 5.0          | 178            | 5.0        | 0.622 | 10.4  | LOS A    | 6.3          | 46.1          | 0.89 | 0.98         | 1.10          | 44.4  |
| 12           | R2      | 37              | 5.0          | 39             | 5.0        | 0.622 | 14.3  | LOS A    | 6.3          | 46.1          | 0.89 | 0.98         | 1.10          | 44.3  |
| Appr         | oach    | 479             | 5.0          | 504            | 5.0        | 0.622 | 10.7  | LOS A    | 6.3          | 46.1          | 0.89 | 0.98         | 1.10          | 43.9  |
| All<br>Vehic | cles    | 1696            | 5.0          | 1785           | 5.0        | 0.622 | 8.2   | LOS A    | 6.3          | 46.1          | 0.74 | 0.79         | 0.81          | 45.3  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 1:37:25 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

# V Site: [Russell Rankin\_PM\_With Development (Site Folder: General)]

Russell Street and Rankin Street, Bathurst PM Peak Period With Proposed Development Site Category: (None) Roundabout

| Vehi         | cle M   | ovemen           | t Perfo   | rmance           |           |              |     |                     |               |             |                |                   |        |                |
|--------------|---------|------------------|-----------|------------------|-----------|--------------|-----|---------------------|---------------|-------------|----------------|-------------------|--------|----------------|
| Mov<br>ID    | Turn    | INP<br>VOLU      | MES       | DEM/<br>FLO      | WS        | Deg.<br>Satn |     | Level of<br>Service |               | EUE         | Prop.  <br>Que | Effective<br>Stop |        | Aver.<br>Speed |
|              |         | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | v/c          | sec |                     | [ Veh.<br>veh | Dist ]<br>m |                | Rate              | Cycles | km/h           |
| Sout         | h: Ran  | kin (S)          |           |                  |           |              |     |                     |               |             |                |                   |        |                |
| 1            | L2      | 6                | 5.0       | 6                | 5.0       | 0.009        | 6.3 | LOS A               | 0.0           | 0.3         | 0.55           | 0.54              | 0.55   | 45.7           |
| 2            | T1      | 179              | 5.0       | 188              | 5.0       | 0.185        | 5.1 | LOS A               | 1.2           | 8.5         | 0.57           | 0.59              | 0.57   | 46.6           |
| 3            | R2      | 24               | 5.0       | 25               | 5.0       | 0.185        | 9.0 | LOS A               | 1.2           | 8.5         | 0.57           | 0.59              | 0.57   | 46.5           |
| Appr         | oach    | 209              | 5.0       | 220              | 5.0       | 0.185        | 5.6 | LOS A               | 1.2           | 8.5         | 0.57           | 0.59              | 0.57   | 46.6           |
| East         | Russ    | ell (E)          |           |                  |           |              |     |                     |               |             |                |                   |        |                |
| 4            | L2      | 28               | 5.0       | 29               | 5.0       | 0.041        | 6.7 | LOS A               | 0.2           | 1.5         | 0.57           | 0.61              | 0.57   | 45.5           |
| 5            | T1      | 127              | 5.0       | 134              | 5.0       | 0.277        | 5.5 | LOS A               | 1.8           | 13.2        | 0.61           | 0.68              | 0.61   | 45.8           |
| 6            | R2      | 171              | 5.0       | 180              | 5.0       | 0.277        | 9.4 | LOS A               | 1.8           | 13.2        | 0.61           | 0.68              | 0.61   | 45.7           |
| Appr         | oach    | 326              | 5.0       | 343              | 5.0       | 0.277        | 7.7 | LOS A               | 1.8           | 13.2        | 0.61           | 0.68              | 0.61   | 45.7           |
| North        | n: Ranl | kin (N)          |           |                  |           |              |     |                     |               |             |                |                   |        |                |
| 7            | L2      | 128              | 5.0       | 135              | 5.0       | 0.133        | 4.5 | LOS A               | 0.7           | 5.2         | 0.34           | 0.49              | 0.34   | 46.4           |
| 8            | T1      | 325              | 5.0       | 342              | 5.0       | 0.298        | 3.9 | LOS A               | 2.0           | 14.4        | 0.35           | 0.47              | 0.35   | 47.1           |
| 9            | R2      | 90               | 5.0       | 95               | 5.0       | 0.298        | 7.8 | LOS A               | 2.0           | 14.4        | 0.35           | 0.47              | 0.35   | 47.1           |
| Appr         | oach    | 543              | 5.0       | 572              | 5.0       | 0.298        | 4.7 | LOS A               | 2.0           | 14.4        | 0.35           | 0.48              | 0.35   | 47.0           |
| West         | : Russ  | ell (W)          |           |                  |           |              |     |                     |               |             |                |                   |        |                |
| 10           | L2      | 48               | 5.0       | 51               | 5.0       | 0.056        | 5.8 | LOS A               | 0.3           | 2.1         | 0.52           | 0.58              | 0.52   | 46.0           |
| 11           | T1      | 85               | 5.0       | 89               | 5.0       | 0.088        | 4.9 | LOS A               | 0.5           | 3.6         | 0.51           | 0.54              | 0.51   | 46.8           |
| 12           | R2      | 14               | 5.0       | 15               | 5.0       | 0.088        | 8.8 | LOS A               | 0.5           | 3.6         | 0.51           | 0.54              | 0.51   | 46.7           |
| Appr         | oach    | 147              | 5.0       | 155              | 5.0       | 0.088        | 5.5 | LOS A               | 0.5           | 3.6         | 0.51           | 0.56              | 0.51   | 46.5           |
| All<br>Vehic | cles    | 1225             | 5.0       | 1289             | 5.0       | 0.298        | 5.7 | LOS A               | 2.0           | 14.4        | 0.47           | 0.56              | 0.47   | 46.5           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 12:58:14 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

# V Site: [Gallipoli Rankin\_PM\_With Development (Site Folder: General)]

Gallipoli Lane and Rankin Street, Bathurst PM Peak Period With Proposed Development Site Category: (None) Give-Way (Two-Way) Design Life Analysis (Final Year): Results for 10 years

| Vehi         | cle M   | ovemen           | t Perfoi  | rmance           |           |              |      |                     |               |               |                |                  |        |                |
|--------------|---------|------------------|-----------|------------------|-----------|--------------|------|---------------------|---------------|---------------|----------------|------------------|--------|----------------|
| Mov<br>ID    | Turn    | INP<br>VOLU      | MES       | DEM/<br>FLO      |           | Deg.<br>Satn |      | Level of<br>Service | QUI           | ACK OF<br>EUE | Prop. E<br>Que | ffective<br>Stop |        | Aver.<br>Speed |
|              |         | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | v/c          | sec  |                     | [ Veh.<br>veh | Dist ]<br>m   |                | Rate             | Cycles | km/h           |
| South        | n: Ranl | kin (S)          |           |                  |           |              |      |                     |               |               |                |                  |        |                |
| 2            | T1      | 259              | 5.0       | 314              | 5.0       | 0.320        | 1.5  | LOS A               | 1.8           | 13.0          | 0.43           | 0.25             | 0.46   | 47.7           |
| 3            | R2      | 139              | 5.0       | 168              | 5.0       | 0.320        | 7.1  | LOS A               | 1.8           | 13.0          | 0.43           | 0.25             | 0.46   | 46.8           |
| Appro        | bach    | 398              | 5.0       | 482              | 5.0       | 0.320        | 3.5  | NA                  | 1.8           | 13.0          | 0.43           | 0.25             | 0.46   | 47.4           |
| East:        | Gallip  | oli (E)          |           |                  |           |              |      |                     |               |               |                |                  |        |                |
| 4            | L2      | 252              | 5.0       | 305              | 5.0       | 0.722        | 10.5 | LOS A               | 6.8           | 49.3          | 0.65           | 1.10             | 1.43   | 41.8           |
| 6            | R2      | 186              | 5.0       | 225              | 5.0       | 0.722        | 17.7 | LOS B               | 6.8           | 49.3          | 0.65           | 1.10             | 1.43   | 41.4           |
| Appro        | bach    | 438              | 5.0       | 530              | 5.0       | 0.722        | 13.5 | LOS A               | 6.8           | 49.3          | 0.65           | 1.10             | 1.43   | 41.6           |
| North        | : Rank  | kin (N)          |           |                  |           |              |      |                     |               |               |                |                  |        |                |
| 7            | L2      | 97               | 5.0       | 117              | 5.0       | 0.233        | 4.7  | LOS A               | 0.0           | 0.0           | 0.00           | 0.15             | 0.00   | 48.5           |
| 8            | T1      | 261              | 5.0       | 316              | 5.0       | 0.233        | 0.1  | LOS A               | 0.0           | 0.0           | 0.00           | 0.15             | 0.00   | 49.1           |
| Appro        | bach    | 358              | 5.0       | 433              | 5.0       | 0.233        | 1.3  | NA                  | 0.0           | 0.0           | 0.00           | 0.15             | 0.00   | 48.9           |
| All<br>Vehic | les     | 1194             | 5.0       | 1445             | 5.0       | 0.722        | 6.5  | NA                  | 6.8           | 49.3          | 0.38           | 0.53             | 0.68   | 45.5           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 1:37:35 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124\_Bathurst Medical Tower\Deliverables\Bathurst.sip9

## V Site: [Howick Milne\_AM\_With Development (Site Folder: General)]

Howick Street and Milne Lane, Bathurst AM Peak Period With Proposed Development Site Category: (None) Give-Way (Two-Way)

| Vehi         | cle M   | ovemen           | t Perfoi  | rmance           |           |              |     |                     |               |               |                |                   |              |                |
|--------------|---------|------------------|-----------|------------------|-----------|--------------|-----|---------------------|---------------|---------------|----------------|-------------------|--------------|----------------|
| Mov<br>ID    | Turn    | INP<br>VOLU      |           | DEM/<br>FLO      |           | Deg.<br>Satn |     | Level of<br>Service | 95% BA<br>QUE | ACK OF<br>EUE | Prop. E<br>Que | ffective:<br>Stop | Aver.<br>No. | Aver.<br>Speed |
|              |         | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | v/c          | sec |                     | [ Veh.<br>veh | Dist]<br>m    |                | Rate              | Cycles       | km/h           |
| South        | h: Miln | e (S)            |           |                  |           |              |     |                     |               |               |                |                   |              |                |
| 1            | L2      | 6                | 5.0       | 6                | 5.0       | 0.082        | 5.2 | LOS A               | 0.3           | 2.0           | 0.44           | 0.70              | 0.44         | 45.0           |
| 3            | R2      | 51               | 5.0       | 54               | 5.0       | 0.082        | 7.6 | LOS A               | 0.3           | 2.0           | 0.44           | 0.70              | 0.44         | 44.6           |
| Appro        | oach    | 57               | 5.0       | 60               | 5.0       | 0.082        | 7.4 | LOS A               | 0.3           | 2.0           | 0.44           | 0.70              | 0.44         | 44.6           |
| East:        | Howic   | :k (E)           |           |                  |           |              |     |                     |               |               |                |                   |              |                |
| 4            | L2      | 182              | 5.0       | 192              | 5.0       | 0.201        | 4.7 | LOS A               | 0.0           | 0.0           | 0.00           | 0.28              | 0.00         | 47.8           |
| 5            | T1      | 169              | 5.0       | 178              | 5.0       | 0.201        | 0.1 | LOS A               | 0.0           | 0.0           | 0.00           | 0.28              | 0.00         | 48.4           |
| Appro        | oach    | 351              | 5.0       | 369              | 5.0       | 0.201        | 2.4 | NA                  | 0.0           | 0.0           | 0.00           | 0.28              | 0.00         | 48.1           |
| West         | : Howi  | ck (W)           |           |                  |           |              |     |                     |               |               |                |                   |              |                |
| 11           | T1      | 275              | 5.0       | 289              | 5.0       | 0.176        | 0.2 | LOS A               | 0.3           | 1.9           | 0.10           | 0.05              | 0.10         | 49.5           |
| 12           | R2      | 25               | 5.0       | 26               | 5.0       | 0.176        | 6.3 | LOS A               | 0.3           | 1.9           | 0.10           | 0.05              | 0.10         | 48.4           |
| Appro        | oach    | 300              | 5.0       | 316              | 5.0       | 0.176        | 0.7 | NA                  | 0.3           | 1.9           | 0.10           | 0.05              | 0.10         | 49.4           |
| All<br>Vehic | les     | 708              | 5.0       | 745              | 5.0       | 0.201        | 2.1 | NA                  | 0.3           | 2.0           | 0.08           | 0.22              | 0.08         | 48.3           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 1:29:31 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124 Bathurst Medical Tower\Deliverables\Bathurst.sip9

### V Site: [Gallipoli Rankin\_AM\_With Development (Site Folder: General)]

Gallipoli Lane and Rankin Street, Bathurst AM Peak Period With Proposed Development Site Category: (None) Give-Way (Two-Way)

| Vehi         | cle M  | ovemen           | t Perfoi  | rmance           |           |              |      |                     |               |               |                |                  |              |                |
|--------------|--------|------------------|-----------|------------------|-----------|--------------|------|---------------------|---------------|---------------|----------------|------------------|--------------|----------------|
| Mov<br>ID    | Turn   | INP<br>VOLU      |           | DEM/<br>FLO      |           | Deg.<br>Satn |      | Level of<br>Service |               | ACK OF<br>EUE | Prop. E<br>Que | ffective<br>Stop | Aver.<br>No. | Aver.<br>Speed |
|              |        | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | v/c          | sec  |                     | [ Veh.<br>veh | Dist]<br>m    |                | Rate             | Cycles       | km/h           |
| South        | n: Ran | kin (S)          |           |                  |           |              |      |                     |               |               |                |                  |              |                |
| 2            | T1     | 187              | 5.0       | 197              | 5.0       | 0.389        | 3.7  | LOS A               | 2.9           | 21.3          | 0.64           | 0.52             | 0.82         | 45.9           |
| 3            | R2     | 251              | 5.0       | 264              | 5.0       | 0.389        | 8.7  | LOS A               | 2.9           | 21.3          | 0.64           | 0.52             | 0.82         | 45.0           |
| Appro        | oach   | 438              | 5.0       | 461              | 5.0       | 0.389        | 6.6  | NA                  | 2.9           | 21.3          | 0.64           | 0.52             | 0.82         | 45.3           |
| East:        | Gallip | oli (E)          |           |                  |           |              |      |                     |               |               |                |                  |              |                |
| 4            | L2     | 72               | 5.0       | 76               | 5.0       | 0.189        | 6.1  | LOS A               | 0.7           | 4.9           | 0.52           | 0.72             | 0.52         | 44.4           |
| 6            | R2     | 51               | 5.0       | 54               | 5.0       | 0.189        | 11.4 | LOS A               | 0.7           | 4.9           | 0.52           | 0.72             | 0.52         | 44.0           |
| Appro        | oach   | 123              | 5.0       | 129              | 5.0       | 0.189        | 8.3  | LOS A               | 0.7           | 4.9           | 0.52           | 0.72             | 0.52         | 44.3           |
| North        | : Ranl | kin (N)          |           |                  |           |              |      |                     |               |               |                |                  |              |                |
| 7            | L2     | 182              | 5.0       | 192              | 5.0       | 0.304        | 4.7  | LOS A               | 0.0           | 0.0           | 0.00           | 0.18             | 0.00         | 48.3           |
| 8            | T1     | 353              | 5.0       | 372              | 5.0       | 0.304        | 0.1  | LOS A               | 0.0           | 0.0           | 0.00           | 0.18             | 0.00         | 48.8           |
| Appro        | oach   | 535              | 5.0       | 563              | 5.0       | 0.304        | 1.7  | NA                  | 0.0           | 0.0           | 0.00           | 0.18             | 0.00         | 48.6           |
| All<br>Vehic | les    | 1096             | 5.0       | 1154             | 5.0       | 0.389        | 4.4  | NA                  | 2.9           | 21.3          | 0.31           | 0.38             | 0.39         | 46.8           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 1:28:40 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124 Bathurst Medical Tower\Deliverables\Bathurst.sip9

## V Site: [Howick Milne\_PM\_With Development (Site Folder: General)]

Howick Street and Milne Lane, Bathurst PM Peak Period With Proposed Development Site Category: (None) Give-Way (Two-Way)

| Vehi         | cle M   | ovemen           | t Perfo   | rmance           |           |              |     |                     |               |               |                |                   |              |                |
|--------------|---------|------------------|-----------|------------------|-----------|--------------|-----|---------------------|---------------|---------------|----------------|-------------------|--------------|----------------|
| Mov<br>ID    | Turn    | INP<br>VOLU      |           | DEM/<br>FLO      |           | Deg.<br>Satn |     | Level of<br>Service |               | ACK OF<br>EUE | Prop. E<br>Que | Effective<br>Stop | Aver.<br>No. | Aver.<br>Speed |
|              |         | [ Total<br>veh/h | HV ]<br>% | [ Total<br>veh/h | HV ]<br>% | v/c          | sec |                     | [ Veh.<br>veh | Dist ]<br>m   |                | Rate              | Cycles       | km/h           |
| South        | h: Miln | e (S)            |           |                  |           |              |     |                     |               |               |                |                   |              |                |
| 1            | L2      | 20               | 5.0       | 21               | 5.0       | 0.298        | 5.7 | LOS A               | 1.2           | 8.8           | 0.51           | 0.79              | 0.58         | 44.5           |
| 3            | R2      | 186              | 5.0       | 196              | 5.0       | 0.298        | 8.4 | LOS A               | 1.2           | 8.8           | 0.51           | 0.79              | 0.58         | 44.1           |
| Appro        | oach    | 206              | 5.0       | 217              | 5.0       | 0.298        | 8.2 | LOS A               | 1.2           | 8.8           | 0.51           | 0.79              | 0.58         | 44.2           |
| East:        | Howic   | :k (E)           |           |                  |           |              |     |                     |               |               |                |                   |              |                |
| 4            | L2      | 97               | 5.0       | 102              | 5.0       | 0.167        | 4.7 | LOS A               | 0.0           | 0.0           | 0.00           | 0.18              | 0.00         | 48.4           |
| 5            | T1      | 197              | 5.0       | 207              | 5.0       | 0.167        | 0.1 | LOS A               | 0.0           | 0.0           | 0.00           | 0.18              | 0.00         | 48.9           |
| Appro        | oach    | 294              | 5.0       | 309              | 5.0       | 0.167        | 1.6 | NA                  | 0.0           | 0.0           | 0.00           | 0.18              | 0.00         | 48.7           |
| West         | : Howi  | ck (W)           |           |                  |           |              |     |                     |               |               |                |                   |              |                |
| 11           | T1      | 294              | 5.0       | 309              | 5.0       | 0.177        | 0.1 | LOS A               | 0.1           | 1.1           | 0.05           | 0.03              | 0.05         | 49.7           |
| 12           | R2      | 15               | 5.0       | 16               | 5.0       | 0.177        | 6.0 | LOS A               | 0.1           | 1.1           | 0.05           | 0.03              | 0.05         | 48.6           |
| Appro        | oach    | 309              | 5.0       | 325              | 5.0       | 0.177        | 0.4 | NA                  | 0.1           | 1.1           | 0.05           | 0.03              | 0.05         | 49.6           |
| All<br>Vehic | les     | 809              | 5.0       | 852              | 5.0       | 0.298        | 2.8 | NA                  | 1.2           | 8.8           | 0.15           | 0.28              | 0.17         | 47.8           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: SPOTTO CONSULTING | Licence: PLUS / 1PC | Processed: Wednesday, 27 October 2021 1:30:11 PM Project: C:\Users\steve\OneDrive\Documents\Spotto Consulting\Projects\0124 Bathurst Medical Tower\Deliverables\Bathurst.sip9

### **APPENDIX E – TURNING TEMPLATES**



HOWICK STREET ( )()12.50 ()חחר  $\vdash$ Ш Ш 2.2 6.85 ЧR Width : 2.50 ( )-SU TRUCK (HRV) Track : 2.50 S ()-RANKIN DESIGN VEHICLE SINGLE UNIT TRUCK 12.5M M JOIN LINE SHEET 3 ONEWAN PART SITE PLAN HORIZONTAL 20 15 10 5 00 10 40 20 30 DESIGNED **PROPOSED MEDICAL CENTRE** .00 / 00 / 2021 BDC **HRV SWEPT PATHS 1** DRAWN

BDC

APPROVED









